Skip to main content
Log in

Microstructure evolution and FEM analysis of a [111] oriented single crystal nickel-based superalloy during tensile creep

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By means of the elastic–plastic stress–strain finite element method (FEM), the distribution of the von Mises stress and strain energy density in the regions near the interfaces of the cuboidal γ/γ′ phases is calculated to investigate the rafted behaviors of γ′ phase in a [111] oriented single crystal (SC) nickel-based superalloy. Results show that, after fully heat treated, the microstructure of the superalloy consists of the cuboidal γ′ phase embedded coherently in the γ matrix and arranged regularly along the 〈100〉 orientation. And the parameters and misfits of γ′/γ phases in the alloy increase with the temperature. After crept for 50 h, the γ′ phase in alloy has transformed into the mesh-like rafted structure on (010) plane along [001] and [100] orientations. When the tensile stress is applied along [111] direction, the change of the strain energy on the planes of the cuboidal γ′ phase results in the directional diffusion of the elements. Thereinto, compared with (010) plane, the bigger expanding strain occurs on (100) and (001) planes along the [010], [001] and [010], [100] directions, which may trap the Al and Ti atoms with bigger radius to promote the directional growth of γ′ phase on (010) plane along [100] and [001] directions. This is thought to be the main reason for the γ′ phase directionally growing into the mesh-like rafted structure on (010) plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.V. Nathal, L.J. Ebert, Gamma prime shape changes during creep of a nickel-base superalloy. Scr. Metall. 17, 1151–1154 (1983)

    Article  Google Scholar 

  2. J.K. Tien, S.M. Copley, The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals. Metall. Trans. 2(1), 215–219 (1971)

    Article  Google Scholar 

  3. S.G. Tian, S. Zhang, F.S. Liang, A.N. Li, J.J. Li, Microstructure evolution and analysis of a single crystal nickel-based superalloy during compressive creep. Mater. Sci. Eng. A 528, 4988–4993 (2011)

    Article  Google Scholar 

  4. M. Feller-Kniepmeier, T. Link, Correlation of microstructure and creep stages in the 〈100〉 oriented superalloy SRR 99 at 1253 K. Metall. Trans. A 20, 1233–1238 (1989)

    Article  Google Scholar 

  5. J.G. Conley, M.E. Fine, J.R. Weertman, Effect of lattice disregistry variation on the late stage phase transformation behavior of precipitates in NiAlMo alloys. Acta Metall. 37(4), 1251–1263 (1989)

    Article  Google Scholar 

  6. J. Li, R.P. Wahi, Investigation of γ/γ′ lattice mismatch in the polycrystalline nickel-base superalloy IN738LC: Influence of heat treatment and creep deformation. Acta Metall. Mater. 43, 507–517 (1995)

    Article  Google Scholar 

  7. T.M. Pollock, A.S. Argon, Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall. Mater. 40(1), 1–30 (1992)

    Article  Google Scholar 

  8. U. Glatzel, M. Feller-Kniepmeier, Calculations of internal stresses in the γ/γ’ microstructure of a nickel-base superalloy with high volume fraction of γ′-phase. Scr. Mater. 23(11), 1839–1844 (1989)

    Google Scholar 

  9. L. Muller, U. Glatzel, M. Feller-Kniepmeier, Calculation of the internal stresses and strains in the microstructure of a single crystal nickel-base superalloy during creep. Acta Metall. Mater. 41(12), 3401–3411 (1993)

    Article  Google Scholar 

  10. T.M. Pollock, A.S. Argon, Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates. Acta Metall. Mater. 42(6), 1859–1874 (1994)

    Article  Google Scholar 

  11. J. Preußner, Y. Rudnik, R. Völkl, U. Glatzel, Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems. Z. Metallkd. 96(6), 595–601 (2005)

    Article  Google Scholar 

  12. T. Tinga, W.A.M. Brekelmans, M.G.D. Geers, Directional coarsening in nickel-base superalloys and its effect on the mechanical properties. Comput. Mater. Sci. 47(2), 471–481 (2009)

    Article  Google Scholar 

  13. T. Kuttner, R.P. Wahi, Modelling of internal stress distribution and deformation behaviour in the precipitation hardened superalloy SC16. Mater. Sci. Eng. A 242, 259–267 (1998)

    Article  Google Scholar 

  14. F.R.N. Nabarro, C.M. Cress, P. Kotschy, The thermodynamic driving force for rafting in superalloys. Acta Mater. 44(8), 3189–3198 (1996)

    Article  Google Scholar 

  15. H. Feng, H. Biermann, H. Mughrabi, Computer simulation of the initial rafting process of a nickel-base single-crystal superalloy. Metall. Mater. Trans. A 31(3), 585–597 (2000)

    Article  Google Scholar 

  16. S.G. Tian, C.R. Chen, J.H. Zhang, H.C. Yang, Y.B. Xu, Z.Q. Hu, Evolution and analysis of γ′ rafting during creep of single crystal nickel base superalloy. Mater. Sci. Technol. 17(6), 736–744 (2001)

    Google Scholar 

  17. H.A. Kuhn, H. Biermann, T. Ungár, H. Mughrabi, An X-ray study of creep-deformation induced changes of the lattice mismatch in the γ′-hardened monocrystalline nickel-base superalloy SRR 99. Acta Metall. Mater. 39(11), 2783–2794 (1991)

    Article  Google Scholar 

  18. H. Biermann, M. Strehler, H Mughrabi, High-temperature measurements of lattice parameters and internal stresses of a creep-deformed monocrystalline nickel-base superalloy. Metall. Mater. Trans. A 27, 1003–1010 (1996)

    Article  Google Scholar 

  19. S.G. Tian, J.H. Zhang, H.C. Yang, Y.B. Xu, Z.Q. Hu, Features and effect factors of directional coarsening for γ′ phase during creep of single crystal nickel base superalloys. J. Aeronaut. Mater. 20, 1–7 (2007)

    Google Scholar 

  20. G.M. Tan, J.J. Yu, Z.Q. Hu, X.F. Sun, Creep property and microstructure evolution of a nickel-base single crystal superalloy in [011] orientation. Mater. Charact. 86, 177–184 (2013)

    Article  Google Scholar 

  21. H.C. Yu, Y. Su, N. Tian, S.G. Tian, Y. Li, X.F. Yu, L.L. Yu, Microstructure evolution and creep behavior of a [111] oriented single crystal nickel-based superalloy during tensile creep. Mater. Sci. Eng. A 565, 292–300 (2013)

    Article  Google Scholar 

  22. G.M. Han, J.J. Yu, Y.L. Sun, X.F. Sun, Z.Q. Hu, Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99. Mater. Sci. Eng. A 527, 5383–5390 (2010)

    Article  Google Scholar 

  23. R.A. MacKay, R.D. Maier, The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals. Metall. Trans. A 13, 1747–1754 (1982)

    Article  Google Scholar 

  24. P. Caron, T. Khan, Y.G. Nakagawa, Effect of orientation on the intermediate temperature creep behaviour of NI-base single crystal superalloys. Scr. Metall. 20(4), 499–502 (1986)

    Article  Google Scholar 

  25. N. Matan, D.C. Cox, P. Carter, M.A. Rist, C.M.F. Rae, R.C. Reed, Creep of CMSX-4 superalloy single crystals: effects of misorientation and temperature. Acta Mater. 47(5), 1549–1563 (1999)

    Article  Google Scholar 

  26. J. Preußner, Y. Rudnik, H. Brehm, R. Völkl, U. Glatzel, A dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals. Int. J. Plast. 25(5), 973–994 (2009)

    Article  MATH  Google Scholar 

  27. S.H. Zhang, J. Zhang, L.H. Lou, Anisotropic stress rupture properties of a nickel base single crystal superalloy at high temperature. J. Mater. Sci. Technol. 27(2), 107–112 (2011)

    Article  Google Scholar 

  28. J.Y. Buffiere, M.C. Cheynet, M. Ignat, Stem analysis of the local chemical composition in the nickel-based superalloy CMSX-2 after creep at high temperature. Scr. Metall. 34(3), 349–356 (1996)

    Google Scholar 

  29. S.G. Tian, J.H. Zhang, X. Wu, H.C. Yang, Y.B. Xu, Z.Q. Hu, Features and effect factors of creep of single-crystal Nickel-base superalloys. Metall. Mater. Trans. A 32, 2947–2957 (2001)

    Article  Google Scholar 

  30. S.G. Tian, Y. Su, B.J. Qian, X.F. Yu, F.S. Liang, A.N. Li, Creep behavior of a single crystal nickel-based superalloy containing 4.2% Re. Mater. Design. 37, 236–342 (2012)

    Article  Google Scholar 

  31. L. Müller, U. Glatzel, M. Feller-Kniepmeier, Modelling thermal misfit stresses in nickel-base superalloys containing high volume fraction of γ′ phase. Acta Metall. Mater. 40(6), 1321–1327 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

Sponsorship of this research by the National Natural Science Foundation and Education Ministry Foundation of China under Grant No. 51271125 and No. 20092102110003 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugui Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Li, Q., Su, Y. et al. Microstructure evolution and FEM analysis of a [111] oriented single crystal nickel-based superalloy during tensile creep. Appl. Phys. A 118, 1407–1417 (2015). https://doi.org/10.1007/s00339-014-8898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8898-x

Keywords

Navigation