Skip to main content
Log in

The Effect of Microstructure on the Electrical Properties of Gas-Atomized Copper–Iron Metastable Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

With the increase in global demand for highly functionalized materials, there is continued interest in exploiting the material properties of metals either individually or in the form of alloys. Copper–iron alloy is considered unique with its remarkable combination of strength and high electrical conductivity. Due to the low cost of iron, this alloy is expected to replace alloys like Cu–Ag and Cu–Nb. In order to explore the microstructural features, copper–iron alloy with three different compositions (10, 30, and 50 at.% Fe) were prepared by a gas atomization process. A detailed microstructural characterization was performed using scanning electron microscopy, X-ray diffraction, and electron backscattered diffraction. Spark plasma sintering was used to sinter the powders to evaluate their electrical conductivities. The mechanism of the microstructure formation is also discussed in detail. As the Fe content increases, the Fe-rich phase changes its shape from spherical to irregular with a concomitant sharp decrease in the electrical conductivity of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.R. Davis (ed.), Copper and Copper Alloys, ASM Specialty Handbook (ASM International, Ohio, 2005)

    Google Scholar 

  2. J. Bevk, J.P. Harbison, J.L. Bell, J. Appl. Phys. 49, 6031 (1978)

    Article  Google Scholar 

  3. J. Bevk, W.A. Sunder, G. Dublon, D.C. Cohen, In situ Composites IV, edited F.D. Lemkey, H. E. Cline, and M. McLean. Elsevier, New York (1982)

  4. W.A. Spitzig, J.D. Verhoeven, Unpublished research (Ames Laboratory, Ames, Iowa, 1987)

    Google Scholar 

  5. G. Bao, Y. Xu, L. Huang, X. Lu, L. Zhang, Y. Fang, L. Meng, J. Liu. Mater. Res. Lett. 4, 37 (2016)

    Article  Google Scholar 

  6. N.I. Kozlenkova, V.I. Pantsyrnyi, A.D. Nikulin, A.K. Shikov, I.I. Potapenko, IEEE Trans. Magn. 32, 2921 (1996)

    Article  Google Scholar 

  7. H. Gao, J. Wang, D. Shu, B. Sun, J. Alloys Compd. 438, 268 (2007)

    Article  Google Scholar 

  8. D. Korn, H. Pfeifle, J. Niebuhr, Z. Physik B. 23, 23 (1976)

    Article  Google Scholar 

  9. L. J. Swartzendruber, in: Binary Alloy Phase Diagrams, ed by T.B. Massalski, 2nd edn. (ASME, New York, 1990), p. 1408

  10. A. Munitz, Metall. Trans. B 18, 565 (1987)

    Article  Google Scholar 

  11. Z. Bojarski, W. Babinski, H. Morawiec, T. Panek, J. Rasek, D. Stroz, Metal. Tech. 7, 248 (1980)

    Article  Google Scholar 

  12. J.-C. Crivello, T. Nobuki, T. Kuji, Mater. Trans. 49, 527 (2008)

    Article  Google Scholar 

  13. M. Mojtahedi, M. Goodarzi, M.R. Aboutalebi, M. Ghaffari, V. Soleimanian, J. Alloys Compd. 550, 380 (2013)

    Article  Google Scholar 

  14. E. Bosco, P. Rizzi, M. Baricco, J. Magn. Magn. Mater. 262, 64 (2003)

    Article  Google Scholar 

  15. H. Zhang, B. Li, J. Cui. Adv. Mater Res. 90, 399 (2012)

    Article  Google Scholar 

  16. M. Cohen, B.H. Kear, R. Mehrabian, Rapid solidification processing principles and technologies H (Claitor’s Publishing Division, Baton Rouge, 1980), p. 1

    Google Scholar 

  17. C.G. Levi, R. Mehrabian, Metall. Trans. A 13, 221 (1982)

    Article  Google Scholar 

  18. J. He, J.-Z. Zhao, X.-F. Wang, L.-L. Gao, Metall. Mater. Trans. A 36, 2449 (2005)

    Article  Google Scholar 

  19. Y. Nakagawa, Acta Metall. 6, 704 (1958)

    Article  Google Scholar 

  20. O. Drbohlav, A.R. Yavari, J. Magn. Magn. Mater. 137, 243 (1994)

    Article  Google Scholar 

  21. R.P. Heuer, J. Am. Chem. Soc. 49, 2711 (1927)

    Article  Google Scholar 

  22. A.S. Karolik, A.A. Luhvich, J. Phys.: Cond. Matter. 6, 873 (1994)

    Google Scholar 

  23. R.A. Brown, Can. J. Phys. 60, 766 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taek-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S.F., Kim, TS. & Kim, BS. The Effect of Microstructure on the Electrical Properties of Gas-Atomized Copper–Iron Metastable Alloys. Met. Mater. Int. 24, 860–868 (2018). https://doi.org/10.1007/s12540-018-0088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0088-5

Keywords

Navigation