Skip to main content
Log in

Low Temperature Diffusion Transformations in Fe–Ni–Ti Alloys During Deformation and Irradiation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe–36Ni–3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77–173 K. The existence of interstitial atoms in the Fe–36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Estrin, A. Vinogradov, Acta Mater. 61, 782 (2013)

    Article  Google Scholar 

  2. V.A. Zavalishin, A.I. Deryagin, V.V. Sagaradze, Phys. Met. Metallogr. 75, 173 (1993)

    Google Scholar 

  3. V.V. Sagaradze, V.A. Shabashov, T.M. Lapina, N.L. Pecherkina, V.P. Pilyugin, Phys. Met. Metallogr. 78, 619 (1994)

    Google Scholar 

  4. V.V. Sagaradze, V.A. Shabashov, Phys. Met. Metallogr. 112, 146 (2011)

    Article  Google Scholar 

  5. X. Quelennec, A. Menand, J.M. Le Breton, R. Pippan, X. Sauvage, Philos. Mag. 90, 1179 (2010)

    Article  Google Scholar 

  6. V.V. Sagaradze, V.A. Shabashov, A.G. Mukoseev, N.L. Pecherkina, I.V. Sagaradze, Phys. Met. Metallogr. 91, 299 (2001)

    Google Scholar 

  7. V.F. Mazanko, D.S. Gertzriken, V.P. Bevz, V.M. Mironov, O.A. Mironova, Metallofizika i Noveishie Tekhnologii 32, 1267 (2010)

    Google Scholar 

  8. H. Gleiter, Acta Met. 16, 455 (1968)

    Article  Google Scholar 

  9. A.R. Kuznetsov, V.V. Sagaradze, Phys. Met. Metallogr. 93, 404 (2002)

    Google Scholar 

  10. V.V. Sagaradze, V.A. Shabashov, N.V. Kataeva, V.A. Zavalishin, K.A. Kozlov, A.R. Kuznetsov, A.V. Litvinov, V.P. Pilyugin, Philos. Mag. 96, 1724 (2016)

    Article  Google Scholar 

  11. V.V. Sagaradze, A.I. Uvarov, Strengthening and Properties of Austenitic Steels (PPD (Printing and Publication Department) of UB RAS, Ekaterinburg, 2013). [in Russian]

    Google Scholar 

  12. V.A. Teplov, V.P. Pilyugin, R.I. Kuznetsov, D.I. Tupitsa, V.A. Shabashov, V.M. Gundyrev, Phys. Met. Metallogr. 64, 83 (1987)

    Google Scholar 

  13. V.S. Rusakov, Mössbauer Spectroscopy of Locally Inhomogeneous Systems (Institute of Nuclear Physics of Kazakhstan National Radiation Centre, Almaty, 2000). [in Russian]

    Google Scholar 

  14. A.Z. Menshikov, E.E. Yurchikov, Izvestiya AN SSSR Ser. Phys. 36, 1463 (1972)

    Google Scholar 

  15. V.V. Ovchinnikov, F.F. Makhin’ko, V.I. Solomonov, N.V. Gushchina, O.A. Kaigorodova, Pis’ma J. Tekh. Phiz. 38, 86 (2012)

    Google Scholar 

  16. P.M. Derlet, D. Nguyen-Manh, S.L. Dudarev, Phys. Rev. B. 76, 054107 (2007)

    Article  Google Scholar 

  17. A.M. Iskandarov, N.N. Medvedev, P.V. Zakharov, S.V. Dmitriev, Comput. Mater. Sci. 47, 429 (2009)

    Article  Google Scholar 

  18. A.V. Markidonov, M.D. Starostenkov, T.I. Neverova, A.A. Barchuk, Pis’ma o Materialakh Lett. Mater. 102, 102 (2011)

    Google Scholar 

  19. I.M. Mikhailovskii, Z.I. Dranova, Zh Exp, Theor. Fiz. J. Exp. Theor. Phys. 63, 567 (1972)

    Google Scholar 

  20. Y.I. Golovin, Fiz. Tverd. Tela Phys. Solid State 50, 2113 (2008)

    Google Scholar 

  21. C.J. Meechan, A. Sosin, J. Appl. Phys. 29, 738 (1958)

    Article  Google Scholar 

  22. L.N. Larikov, V.M. Falchenko, V.F. Mazanko, Dokl. AN SSSR Proc. USSR Acad. Sci. 221, 1073 (1975)

    Google Scholar 

  23. K. Sassa, W. Petry, G. Vogl, Philos. Mag. A 48, 41 (1983)

    Article  Google Scholar 

  24. S.E. Danilov, V.L. Arbuzov, A.P. Druzhkov, K.V. Shal’nov, Voprosy atomnoi nauki i tekhniki (Problems of Nuclear Science and Engineering) Ser. FRP and RM (The Physics of Irradiation Damage and Irradiation Materials Science), vol. 3 (2000). [in Russian]

  25. A. Chamberod, J. Laugier, J.M. Penisson, J. Magn. Magn. Mater. 10, 139 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

The research was carried out within the state assignment of FASO of Russia (theme “Structure” No. 01201463331) under partial financial support from the Russian Scientific Foundation (Project No. 14-13-00908, part 3.2). The authors are grateful to Zamatovskii A.E. and Lyashkov K.A. for the aid in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Shabashov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagaradze, V., Shabashov, V., Kataeva, N. et al. Low Temperature Diffusion Transformations in Fe–Ni–Ti Alloys During Deformation and Irradiation. Met. Mater. Int. 24, 249–254 (2018). https://doi.org/10.1007/s12540-018-0046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0046-2

Keywords

Navigation