Skip to main content
Log in

Relaxation of the structure of Fe–Ni alloys during mechanical alloying induced by severe plastic deformation

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Deformation, thermal, and radiation-induced processes of the relaxation of structure of binary and specially modified fcc Fe–Ni alloys subjected to severe cold plastic deformation have been compared using Mössbauer spectroscopy. In the course of mechanical alloying, the dynamic aging of the alloys has been found the activity of which decreases with increasing rate of deformation and decreasing chemical activity and diffusion mobility of the elements and a channel for the shear γ → α transition appears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Gertsriken, V. F. Mazanko, V. M. Tyshkevich, and V. M. Fal’chenko, Mass Transfer in Metals at Low Temperatures under Conditions of External Actions (RIO IMF, Kiev, 1999) [in Russian].

    Google Scholar 

  2. P. A. Vityaz’, F. G. Lovshenko, and G. F. Lovshenko, Mecanically Alloyed Alloy Based on Aluminum and Copper (Belarus. Navuka, Minsk, 1998) [in Russian].

    Google Scholar 

  3. M. A. Shtremel’, “Participation of diffusion in the processes of mechanical alloying,” Metal Sci. Heat Treat. 44, 324–327 (2002).

    Article  Google Scholar 

  4. Yu. A. Skakov, “High-energy cold plastic deformation, diffusion, and mechanochemical synthesis,” Metal Sci. Heat Treat. 46, 137–145 (2004).

    Article  Google Scholar 

  5. V. V. Sagaradze and V. A. Shabashov, “Anomalous diffusion phase transformations in steels upon severe cold deformation,” Phys. Met. Metallogr. 112, 146–164 (2011).

    Article  Google Scholar 

  6. A. M. Glezer and V. A. Pozdnyakov, “Relaxation mechanisms and different paths of defect-structure evolution under severe plastic deformations,” Dokl. Phys. 49, 570–572 (2004).

    Article  Google Scholar 

  7. A. M. Glezer and L. S. Metlov, “Physics of megaplastic (severe) deformation in solids,: Phys. Solid State 52, 1162–1169 (2010).

    Article  Google Scholar 

  8. V. A. Shabashov, V. V. Sagaradze, A. V. Litvinov, and K. A. Kozlov, “Effect of the rate of cold plastic deformation on the kinetics of mechanical alloying of the Fe–35Ni–5Al alloy,” Phys. Met. Metallogr. 109, 483–491 (2010).

    Article  Google Scholar 

  9. V. A. Shabashov, L. G. Korshunov, A. G. Mukoseev, V. V. Sagaradze, A. V. Makarov, V. P. Pilyugin, S. I. Novikov, and N. F. Vildanova, “Deformationinduced phase transformation in high-carbon steel,” Mater. Sci. Eng., A 346, 196–207 (2003).

    Article  Google Scholar 

  10. V. A. Shabashov, S. V. Borisov, A. E. Zamatovsky, N. F. Vildanova, A. G. Mukoseev, A. V. Litvinov, and O. P. Shepatkovsky, “Deformation-induced transformations in nitride layers formed in bcc iron,” Mater. Sci. Eng., A 452–453, 575–583 (2007).

    Article  Google Scholar 

  11. V. A. Shabashov, S. V. Borisov, A. V. Litvinov, A. E. Zamatovsky, K. A. Lyashkov, V. V. Sagaradze, and N. F. Vildanova, “Mechanomaking of nanostructure in nitrided Fe–Cr alloys by cyclic “dissolution–precipitation,” deformation-induced transformations,” High Press. Res. 33, 795–812 (2013).

    Article  Google Scholar 

  12. V. V. Sagaradze, A. V. Litvinov, V. A. Shabashov, N. F. Vil’danova, A. G. Mukoseev, and K. A. Kozlov, “New method of mechanical alloying of ODS steels using iron oxides,” Phys. Met. Metallogr. 101, 566–576 (2006).

    Article  Google Scholar 

  13. V. A. Shabashov, K. A. Kozlov, K. A. Lyashkov, N. V. Kataeva, A. V. Litvinov, V. V. Sagaradze, and A. E. Zamatovskii, “Solid-state mechanical synthesis of austenitic Fe–Ni–Cr–N alloys,” Phys. Met. Metallogr. 115, 392–402 (2014).

    Article  Google Scholar 

  14. V. A. Teplov, V. P. Pilyugin, R. I. Kuznetsov, D. I. Tupitsa, V. A. Shabashov, and V. M. Gundyrev, “Stress-induced bcc–fcc phase transition in iron–nickel alloy,” Fiz. Met. Metalloved. 64 (1), 93–100 (1987).

    Google Scholar 

  15. V. A. Shabashov, V. V. Sagaradze, S. V. Morozov, and G. A. Volkov, “Mössbauer study of the kinetics of deformation-induced dissolution of intermetallic compounds in Fe–Ni–Ti austenite,” Metallofizika 12, 107–114 (1990).

    Google Scholar 

  16. S. K. Sidorov and A. V. Doroshenko, “On the magnetic structure of fcc Ni–Fe alloys,” Fiz. Met. Metalloved. 19, 786–788 (1965).

    Google Scholar 

  17. A. Z. Men’shikov and E. E. Yurchikov, “Mössbauer effect in fcc Fe–Ni alloys,” Zh. Eksper. Teor. Fiz. 63, 190–198 (1971).

    Google Scholar 

  18. V. S. Rusakov, Mössbauer Spectroscopy of Locally Inhomogeneous Systems (Inst. Yader. Fiz., Nauchn. Yader. Tsentr., Almaty, 2000) [in Russian].

    Google Scholar 

  19. B. N. Rolov, Smeared Phase Transitions (Zinatne, Riga, 1972) [in Russian].

    Google Scholar 

  20. A. Z. Men’shikov and E. E. Yurchikov, “The Curie temperature of iron–nickel alloys with a face-centered cubic structure,” Izv. Akad. Nauk SSSR, Ser. Fiz., No. 7, 1463–1467 (1972).

    Google Scholar 

  21. I. Lauermanova, “Effective magnetic fields in the Fe-Ni–C Martensite,” Proc. 5th Int. Conf. on Mössbauer Spectroscopy (Praha, 1975).

    Google Scholar 

  22. V. V. Sagaradze, V. A. Shabashov, T. M. Lapina, N. L. Pecherkina, and V. P. Pilyugin, “Low temperature strain-induced dissolution of intermetallic phases Ni3Al(Ti, Si, Zr) in fcc Fe–Ni alloys,” Phys. Met. Metallogr. 78, 619–628 (1994).

    Google Scholar 

  23. V. A. Shabashov, A. E. Zamatovskii, and V. P. Pilyugin, “Accommodation stresses and structural-phase transitions in Fe–Ni alloys upon compression in Bridgman anvils,” Phys. Met. Metallogr. 108, 475–483 (2009).

    Article  Google Scholar 

  24. T. M. Lapina, V. A. Shabashov, V. V. Sagaradze, and V. L. Arbuzov, “The redistribution of atoms during radiation-induced martensitic transformations in Fe–Ni alloys,” Mater. Sci. Forum 294–296, 767–770 (1999).

    Article  Google Scholar 

  25. Yu. L. Rodionov, G. G. Isfandiyarov, and V. N. Zambrzhitskii, “Effect of annealing on atom redistribution in austenite,” Fiz. Met. Metalloved. 49, 335–341 (1980).

    Google Scholar 

  26. I. Ya. Dekhtyar, B. G. Eglazov, L. M. Isakov, V. S. Mikhalenkov, and V. I. Romashko, “Effect of plastic deformation on Mössbauer effect in Fe–Ni alloys of invar composition,” Dokl. Akad. Nauk SSSR 175, 556–559 (1967).

    Google Scholar 

  27. H. Gleiter, “Die Formanderung von Ausscheidungen durch Diffusion and Spannungsfeld von Versetzungen,” Acta Metall. 16, 455–464 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shabashov.

Additional information

Original Russian Text © V.A. Shabashov, V.V. Sagaradze, A.V. Litvinov, A.E. Zamatovskii, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 9, pp. 918–927.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabashov, V.A., Sagaradze, V.V., Litvinov, A.V. et al. Relaxation of the structure of Fe–Ni alloys during mechanical alloying induced by severe plastic deformation. Phys. Metals Metallogr. 116, 869–878 (2015). https://doi.org/10.1134/S0031918X1509015X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1509015X

Keywords

Navigation