Skip to main content
Log in

Characterization of Hot Deformation Behavior and Processing Maps of Ti–19Al–22Mo Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

A Correction to this article was published on 18 July 2019

This article has been updated

Abstract

The isothermal compression tests were carried out to study the hot deformation behavior and microstructure evolution of Ti–19Al–22Mo alloy. The samples were deformed in the temperature range from 1100 to 1250 °C with an interval of 50 °C, strain rate ranging from 0.01 to 1 s−1 and the height reduction of 50% using Gleeble-3800 thermal–mechanical simulator. By using this experimental data an artificial neural network (ANN) model was developed and evaluated with unseen data. Further, the developed ANN model was used to predict flow stress correction from adiabatic heating at finer intervals of strain rates and temperatures. The predicted isothermal flow stress values were utilized to construct processing maps for Ti–19Al–22Mo alloy at true strain of 0.4 and 0.6. The maximum efficiency was noticed at 1100 °C with the strain rate of 0.01 s−1 associated with dynamic recrystallization and dynamic recovery. The deformation conditions of the instability domains in processing map showed wedge cracking and flow localization. Using the processing maps safe working parameters for hot deformation of Ti–19Al–22Mo alloy was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 18 July 2019

    Unfortunately, the acknowledgements were incomplete in the original version of this article.

References

  1. K. Kothari, R. Radhakrishnan, N.M. Wereley, Prog. Aerosp. Sci. 55, 1 (2012)

    Article  Google Scholar 

  2. F. Froes, C. Suryanarayana, D. Eliezer, J. Mater. Sci. 27, 5113 (1992)

    Article  Google Scholar 

  3. G. Lütjering, J.C. Williams, Titanium (Springer, Berlin, 2007), pp. 1–379

    Google Scholar 

  4. M. Kimura, K. Hashimoto, H. Morikawa, Mater. Sci. Eng. A 152, 54 (1992)

    Article  Google Scholar 

  5. C.Z. Qiu, L. Yong, L. Huang, W. Zhang, L. Bin, L. Bin, Trans. Nonferr. Met. Soc. China 22, 521 (2012)

    Article  Google Scholar 

  6. M. Thomas, S. Naka, T. Khan, Mater. Trans.35, 787 (1994)

    Article  Google Scholar 

  7. Y. Lu, J. Yamada, J. Nakamura, K. Yoshimi, H. Kato, J. Alloys. Compd. 696, 130 (2017)

    Article  Google Scholar 

  8. M. Premkumar, A.K. Singh, Intermetallics 18, 199 (2010)

    Article  Google Scholar 

  9. W. Sha, K.L. Edwards, Mater. Des. 28, 1747 (2007)

    Article  Google Scholar 

  10. W.Y. Zhang, Appl. Mech. Mater. 20–23, 1211 (2010)

    Article  Google Scholar 

  11. H.K.D.H. Bhadeshia, ISIJ Int. 39, 966 (1999)

    Article  Google Scholar 

  12. N.S. Reddy, J. Krishnaiah, S.G. Hong, J.S. Lee, Mater. Sci. Eng. A 508, 93 (2009)

    Article  Google Scholar 

  13. N.S. Reddy, B.B. Panigrahi, C.M. Ho, J.H. Kim, C.S. Lee, Comput. Mater. Sci. 107, 175 (2015)

    Article  Google Scholar 

  14. A.K. Singh, S. Kumar, S. Banumathy, R.K. Mandal, Philos. Mag. 87, 5435 (2007)

    Article  Google Scholar 

  15. X. Ma, W. Zeng, B. Xu, Y. Sun, C. Xue, Y. Han, Intermetallics 20, 1 (2012)

    Article  Google Scholar 

  16. H. Zhou, Q. Peng, H. Yang, X. Zhou, R. Liu, Y. Peng, F. Zhong, J. Nucl. Mater. 448, 153 (2014)

    Article  Google Scholar 

  17. J. Fan, H. Kou, M. Lai, B. Tang, H. Chang, J. Li, Rare Met. Mater. Eng. 43, 808 (2014)

    Article  Google Scholar 

  18. W. Ke, M.Q. Li, Trans. Nonferr. Met. Soc. China 26, 1583 (2016)

    Article  Google Scholar 

  19. T. Yan, E. Yu, Y. Zhao, Mater. Des. 50, 574 (2013)

    Article  Google Scholar 

  20. Z. Liying, Y. Guanjun, G. Peng, M. Xiaonan, Z. Yongqing, Z. Lian, Rare Met. Mat. Eng. 39, 1505 (2010)

    Article  Google Scholar 

  21. Y. Prasad, K. Rao, S. Sasidhar, Hot Working Guide: A Compendium of Processing Maps (ASM International, Geauga County, 2015), pp. 1–625

    Google Scholar 

  22. G.E. Dieter, H.A. Kuhn, S.L. Semiatin, Handbook of Workability and Process Design (ASM International, Geauga County, 2003), pp. 1–389

    Google Scholar 

  23. Y.V.R.K. Prasad, S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps (ASM International, Geauga County, 1997), pp. 1–545

    Google Scholar 

  24. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad, Mater. Sci. Eng. A 284, 184 (2000)

    Article  Google Scholar 

  25. Y.V.R.K. Prasad, T. Seshacharyulu, Int. Mater. Rev. 43, 243 (1998)

    Article  Google Scholar 

  26. S.L. Semiatin, V. Seetharaman, I. Weiss, JOM 49, 33 (1997)

    Article  Google Scholar 

  27. D. Morris, D. Harries, J. Mater. Sci. 12, 1587 (1977)

    Article  Google Scholar 

  28. G. Zhou, H. Ding, F. Cao, B. Zhang, J. Mater. Sci. Technol. 30, 217 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Fundamental Research Program (PNK5520/PNK5700) of the Korea Institute of Materials Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. S. Reddy or Jong-Taek Yeom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayana, P.L., Li, CL., Hong, JK. et al. Characterization of Hot Deformation Behavior and Processing Maps of Ti–19Al–22Mo Alloy. Met. Mater. Int. 25, 1063–1071 (2019). https://doi.org/10.1007/s12540-018-00237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-00237-4

Keywords

Navigation