Skip to main content
Log in

Neural Network Approach to Construct a Processing Map from a Non-linear Stress–Temperature Relationship

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An accurate processing map for a metal provides a means of attaining a desired microstructure and required shape through thermo-mechanical processing. To construct such a map, the isothermal flow stress, σiso, is required. Conventionally, the non-isothermal flow stress measured by experiment is corrected to σiso using whole-temperature-range linear interpolation (WRLI) or partial-temperature-range linear interpolation (PRLI). However, these approaches could incur significant errors if the non-isothermal flow stress exhibits a non-linear relationship with the temperature. In this study, an artificial neural network (ANN) model was applied to correct the non-isothermal flow stress in 10 wt% Cr steel, which exhibits a non-linear temperature dependence within a target temperature range of 750–1250 °C. Processing maps were constructed using σiso corrected by applying the WRLI, PRLI, and ANN approaches, respectively, and were then compared with the actual microstructures. The WRLI approach produced the highest minimum error of σiso (17.2%) and over-predicted the shear-band formation. The PRLI approach reasonably predicted the microstructural changes, but the minimum error for σiso (8.9%) was somewhat high. The ANN approach not only realized the lowest minimum error of σiso (~ 0%), but also effectively predicted the microstructural changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.L. Gegel, in Computer Simulation in Materials Science, ed. by R.J. Arsenault, J.R. Beeler, D.M. Easterling (ASM, Metals Park, 1987), p. 291

    Google Scholar 

  2. J.C. Malas, V. Seetharaman, JOM 44, 8 (1992)

    Article  Google Scholar 

  3. S.V.S.N. Murty, B.N. Rao, Mater. Sci. Eng. A 254, 76 (1998)

    Article  Google Scholar 

  4. S.L. Semiatin, G.D. Lahoti, Metall. Trans. A 12, 1705 (1981)

    Article  Google Scholar 

  5. Y.V.R.K. Prasad, K.P. Rao, S. Sasidhara, Hot Working Guide, 2nd edn. (ASM International, Ohio, 2015), pp. 1–30

    Google Scholar 

  6. G.R. Johnson, W.H. Cook, in Proceedings of Seventh International Symposium on Ballistics. A Constitutive Model and Data for Metals subjected to Large Strains, High Strain Rates and High Temperatures (The Hague, The Netherlands, 1983)

  7. A.S. Khan, S. Huang, Int. J. Plasticity 8, 397 (1992)

    Article  Google Scholar 

  8. A.S. Khan, R. Liang, Int. J. Plasticity 15, 1089 (1999)

    Article  Google Scholar 

  9. M.J. Kim, H.J. Jeong, J.W. Park, S.T. Hong, H.N. Han, Met. Mater. Int. 24, 42 (2018)

    Article  Google Scholar 

  10. F. Kabirian, A.S. Khan, A. Pandey, Int. J. Plasticity 55, 232 (2014)

    Article  Google Scholar 

  11. H. Mecking, U.F. Kocks, Acta Metall. 29, 1865 (1981)

    Article  Google Scholar 

  12. P.S. Follansbee, G.T. Gray III, Metall. Trans. A 20, 863 (1989)

    Article  Google Scholar 

  13. S. Nemat-Nasser, J.B. Isaacs, Acta Mater. 45, 907 (1997)

    Article  Google Scholar 

  14. C.H. Park, S.G. Hong, C.S. Lee, Mater. Sci. Eng. A 528, 1154 (2011)

    Article  Google Scholar 

  15. I. Yoo, J. Park, S. Choe, Korean J. Met. Mater. 34, 973 (1996)

    Google Scholar 

  16. X. Yang, H. Guo, Z. Yao, J. Mater. Res. 31, 2863 (2016)

    Article  Google Scholar 

  17. N.S. Reddy, Y.H. Lee, C.H. Park, C.S. Lee, Mater. Sci. Eng. A 492, 276 (2008)

    Article  Google Scholar 

  18. G. Ji, F. Li, Q. Li, H. Li, Z. Li, Mater. Sci. Eng. A 528, 4774 (2011)

    Article  Google Scholar 

  19. P.S. Robi, U.S. Dixit, J. Mater. Process Technol. 142, 289 (2003)

    Article  Google Scholar 

  20. S. Mandal, P.V. Sivaprasad, S. Venugopal, K.P.N. Murthy, Appl. Soft Comput. 9, 237 (2009)

    Article  Google Scholar 

  21. J. Zhao, H. Ding, W. Zhao, M. Huang, D. Wei, Z. Jiang, Comput. Mater. Sci. 92, 47 (2014)

    Article  Google Scholar 

  22. Y. Zhu, W. Zeng, Y. Sun, F. Feng, Y. Zhou, Comput. Mater. Sci. 50, 1785 (2011)

    Article  Google Scholar 

  23. B.H. Lee, N.S. Reddy, J.T. Yeom, C.S. Lee, J. Mater. Process Tech. 187–188, 766 (2007)

    Article  Google Scholar 

  24. C.H. Park, Y.G. Ko, J. Park, C.S. Lee, Mater. Sci. Eng. A 496, 150 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (2013025839) from Doosan Heavy Industries & Construction, Republic of Korea. Author N. S. Reddy greatly acknowledges for the support of research group promotion, Gyeongsang National University, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Hee Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C.H., Cha, D., Kim, M. et al. Neural Network Approach to Construct a Processing Map from a Non-linear Stress–Temperature Relationship. Met. Mater. Int. 25, 768–778 (2019). https://doi.org/10.1007/s12540-018-00225-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-00225-8

Keywords

Navigation