Skip to main content
Log in

Continuous cooling transformation behavior and impact toughness in heat-affected zone of Nb-containing fire-resistant steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Simulated heat-affected zone continuous cooling transformation diagram was developed for advanced fireresistant steel. Over a wide range of cooling rates, corresponding to t8/5 from 6 s to 150 s, granular bainite was the dominant transformation constituent, while the morphology of less dominant martensite-austenite (M-A) constituent changed from film-like to block-type constituent; but the hardness remained similar to the average value of 190-205 HV (0.2). The start and finish transformation temperature was high at 700 °C and 500 °C, and is different from the conventional high strength low alloy steels. It is believed that the high-content (0.09 wt%) of Nb may promote bainite transformation at relatively high temperatures. Martenistic matrix was not observed at high cooling rate and the film-like M-A constituent and blocky M-A constituent with thin film of retained austenite and lath martensite were observed on slow cooling. Excellent impact toughness was obtained in the heat-affected zone with 15-75 kJ/cm welding heat input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Wan, F. Sun, L. Zhang, and A. Shan, Mater. Design 36, 227 (2012).

    Article  Google Scholar 

  2. R. Chijiwa, H. Tamehiro, Y. Yoshida, K. Funato, R. Uemori, and Y. Horii, Nippon Steel Tech. Rep. 58, 48 (1993).

    Google Scholar 

  3. Y. Mizutani, K. Ishibashi, K. Yoshii, Y. Watanabe, R. Chijiiwa, and Y. Yoshida, Nippon Steel Tech. Rep. 90, 45 (2004).

    Google Scholar 

  4. R. Hattingh and G. Pienaar, Int. J. Pres. Ves. Pip. 75, 661 (1998).

    Article  Google Scholar 

  5. J. R. Yang, C. Y. Huang, and C. S. Chiou, Mater. T. JIM 40, 199 (1999).

    Article  Google Scholar 

  6. H. Kawan, M. Shibata, S. Okano, Y. Kobayashi, and Y. Okazaki, R&D Kobe Steel Engineering Rep. 54, 110 (2004).

  7. A. D. Bate and P. R. Kirkwood, Proc. Microalloying’88 Held in Conjunction with the 1988 World Materials Congress, p. 175, ASM Int., Chicago, USA (1988).

    Google Scholar 

  8. Y. Q. Zhang, H. Q. Zhang, J. F. Li, and W. M. Liu, J. Iron Steel Res. Int. 16, 73 (2009).

    Article  Google Scholar 

  9. C. Miao, C. Shang, X. Wang, L. Zhang, and M. Subramanian, Acta Metall. Sin. 46, 541 (2010).

    Article  Google Scholar 

  10. Z. X. Zhu, L. Kuzmikova, H. J. Li, L. Chen, B. D. Jong, and F. Barbaro, Mater. Sci. Forum 753, 325 (2013).

    Article  Google Scholar 

  11. F. Barbaro, Z. X. Zhu, L. Kuzmikova, H. J. Li, and H. Jian, Proc. Int. Conf. of Microalloying 2015 & Offshore Engineering Steels, pp.453–457, The Chinese Society for Metals (CSM) and Chinese Academy of Engineering (CAE), Changzhou, China (2015).

    Google Scholar 

  12. N. C. Wu, Iron & Steel 49, 82 (2014).

    Google Scholar 

  13. H. K. D. H. Bhadeshia, Bainite in Steels, 2 nd ed., pp.223–224, IOM Communication Ltd, London, UK (2001).

    Google Scholar 

  14. X. Yue, J. C. Lippold, B. T. Alexandrov, and S. S. Babu, Weld. J. 91, S67 (2012).

    Google Scholar 

  15. Y. T. Zhao, S. W. Yang, C. J. Shang, X. M. Wang, W. Liu, and X. L. He, Mater. Sci. Eng. A 454-455, 695 (2007).

    Article  Google Scholar 

  16. L. Yu, H. H. Wang, T. P. Hou, X. L. Wang, X. L. Wan, and K. M. Wu, Sci. Technol. Weld. Joi. 19, 708 (2014).

    Article  Google Scholar 

  17. G. I. Rees, J. Perdrix, T. Maurickx, and H. K. D. H. Bhadeshia, Mat. Sci. Eng. A 194, 179 (1995).

  18. S. Lee, H. Na, B. Kim, D. Kim, and C. Kang, Metall. Mater. Trans. A 44, 2523 (2013).

    Article  Google Scholar 

  19. T. Jia and M. Militzer, Metall. Mater. Trans. A 46, 614 (2015).

    Article  Google Scholar 

  20. X.-W. Chen, G.-Y. Qiao, X.-L. Han, X. Wanga, F.-R. Xiao, and B. Liao, Mater. Design 53, 888 (2014).

    Article  Google Scholar 

  21. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals, pp.219–385, Elsevier Science Publishers, New York, USA (1988).

    Google Scholar 

  22. E. A. Simielli, S. Yue, and J. J. Jonas, Metall. Mater. Trans. A 23, 597 (1992).

    Article  Google Scholar 

  23. N. Maruyama, G. D. W. Smith, and A. Cerezo, Mat. Sci. Eng. A 353,126 (2003).

    Article  Google Scholar 

  24. T. D. Xu, Scripta Mater. 37, 1643 (1997).

    Article  Google Scholar 

  25. K. C. Russel, Acta Metall. Mater. 17, 1123 (1969).

    Article  Google Scholar 

  26. R. R. de Avillez, Niobium Technical Report, p. 1, CBMM, Rio de Janeiro, Brazil (1982).

    Google Scholar 

  27. C. Fossaert, G. Rees, T. Maurickx, and H. K. D. H. Bhadeshia, Metall. Mater. Trans. A 26, 21 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H.H., Qin, Z.P., Wan, X.L. et al. Continuous cooling transformation behavior and impact toughness in heat-affected zone of Nb-containing fire-resistant steel. Met. Mater. Int. 23, 848–854 (2017). https://doi.org/10.1007/s12540-017-6776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6776-8

Keywords

Navigation