Skip to main content
Log in

Characterization of microstructure of HAZs in as-welded and service condition of P91 pipe weldments

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Steels 9-12% Cr, having the high creep rupture strength are advocated for the modern low polluting thermal power plants. In the present investigation, the P91 pipe weldments have been characterized for microstructural responses in as-welded, post-weld heat treatment (PWHT) and ageing conditions. The PWHT of welded samples were carried out at 760 °C for time of 2 h and ageing at 760 °C for 720 h and 1440 h, respectively. The effect of time has been studied on precipitates size, distribution of precipitates and grain sizes present in various zones of P91 steel weldments. The impact toughness and hardness variation of heat affected zone (HAZ) have also been studied in as-welded condition as well as at different heat treatment condition. A significant change was observed in grain size and precipitates size after each heat treatment condition. The maximum impact toughness of HAZ was obtained after PWHT at 760 °C for 2 h. The main phase observed in weld fusion zone in as-welded, PWHT and ageing conditions were M23C6, MX, M7C3, Fe-rich M3C and M2C. The unwanted Z-phase (NbCrN) was also noticed in weld fusion zone after ageing of 1440 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Cerjak, P. Hofer, and B. Schaffernak, ISIJ Int. 39, 874 (1999).

    Article  Google Scholar 

  2. F. Masuyama, ISIJ Int. 41, 612 (2001).

    Article  Google Scholar 

  3. V. K. Sikka, C. T. Ward, and C. K. Thomas, Proceedings of International Conference on Ferritic Steels for High Temperature Applications (Ed. A.K. Khare), p. 65, ASM International, Ohio, USA (1983).

  4. S. J. Sandersion, Proceeding of the ASM International Conference on on Ferritic Steels for High Temperature Applications (Ed. A.K. Khare), p. 85, ASM International, Ohio, USA (1983).

  5. C. Coussment and A. Dhooge, Int. J. Pres. Ves. Pip. 45, 163 (1991).

    Article  Google Scholar 

  6. S. Haribabu, A. Amarendra, R. Rajaraman, and C. S. Sundar, J. Phys. Conf. 443, 1 (2013).

    Google Scholar 

  7. B. Arivazhagan and M. Kamaraj, J. Manuf. Process. 15, 542 (2013).

    Article  Google Scholar 

  8. B. Silwal, L. Li, A. Deceuster, and B. Griffiths, Weld. J. 92, 80 (2013).

    Google Scholar 

  9. C. Pandey, A. Giri, and M. M. Mahapatra, Mat. Sci. Eng. A 657, 173 (2016).

    Article  Google Scholar 

  10. C. Pandey, A. Giri, and M. M. Mahapatra, Mat. Sci. Eng. A 664, 58 (2016).

    Article  Google Scholar 

  11. C. Pandey and M.M. Mahapatra, P. I. Mech. Eng. E, DOI: 10.1177/0954408916656678 (2016).

  12. T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe, Int. J. Pres. Ves. Pip. 83, 63 (2006).

    Article  Google Scholar 

  13. B. Arivazhagan, S. Sundaresan, and M. Kamaraj, J. Mater. Process. Tech. 209, 5245 (2009).

    Article  Google Scholar 

  14. J. A. Francis, W. Mazur, and H. K. D. H. Bhadeshia, Mater. Sci. Tech. 22, 1387 (2006).

  15. Y. Wang, R. Kannan, and L. Li, Mater. Charact. 118, 225 (2016).

    Article  Google Scholar 

  16. S. K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, and M. Tabuchi, Int. J. Pres. Ves. Pip. 80, 405 (2003).

    Article  Google Scholar 

  17. D. J. Abson and J. S. Rothwell, Int. Mater. Rev. 58, 438 (2013).

    Article  Google Scholar 

  18. K. Sawada, M. Bauer, F. Kauffmann, P. Mayr, and A. Klenk, Mat. Sci. Eng. A 527, 1417 (2010).

    Article  Google Scholar 

  19. S. Spigrarelli and E. Quadrini, Mater. Design 23, 547 (2002).

    Article  Google Scholar 

  20. M. E. Abd El-Azim, O. E. El-Desoky, H. Ruoff, F. Kauffmann, and E. Roos, J. Mater. Sci. Tech. 29, 1027 (2013).

    Article  Google Scholar 

  21. M. L. Santella, R. W. Swinderman, R. W. Reed, and J. M. Tanzosh, M. L. Santella, R. W. Swinderman, R. W. Reed, and J. M. Tanzosh, EPRI Conference on 9Cr Materials Fabrication and Joining Technologies, p. 14–1, EPRI, California, USA (2001).

    Google Scholar 

  22. C. Pandey and M. M. Mahapatra, J. Mater. Eng. Perform. 25, 2761 (2016).

    Article  Google Scholar 

  23. K. E. Dawson, G. J. Tatlock, K. Chi, and P. Barnard, Metall. Mater. Trans. A 44, 5065 (2013).

    Article  Google Scholar 

  24. C. Pandey and M. M. Mahapatara, J. Mater. Eng. Perform. 25, 2195 (2016).

    Article  Google Scholar 

  25. S. Paddea, J. A. Francis, A. M. Paradowaska, P. J. Bouchard, and I. A. Shibli, Mat. Sci. Eng. A 534, 663 (2012).

    Article  Google Scholar 

  26. K. Sawada, T. Hara, M. Tabuchi, K. Kimura, and K. Kubushiro, Mater. Charact. 101, 106 (2015).

    Article  Google Scholar 

  27. C. Pandey, A. Giri, and M. M. Mahapatra, Int. J. Steel Struct. 16, 333 (2016).

    Article  Google Scholar 

  28. D. P. Singh, M. Sharma, and J. S. Gill, Int. J. Res. Mech. Eng. Tech. 3, 216 (2013).

    Google Scholar 

  29. M. Sireesha, S. K. Albert, and S. Sundaresan, J. Mater. Eng. Perform. 10, 320 (2001).

    Article  Google Scholar 

  30. B. Arivazhagan and M. Vasudevan, J. Manuf. Process. 16, 305 (2014).

    Article  Google Scholar 

  31. H. K. Danielsen and J. Hald, Mat. Sci. Eng. A 505(1-2), 169 (2009).

    Article  Google Scholar 

  32. A. Golpayegani, H. O. Andren, H. Danielsen, and J. Hald, Mat. Sci. Eng. A 489, 310 (2008).

    Article  Google Scholar 

  33. C. Hurtado-Noreña, C. A. Danón, M. I. Luppo, and P. Bruzzoni, Metall. Mater. Trans. A 46, 3972 (2015).

    Article  Google Scholar 

  34. R. D. Peelamedu, R. Roy, and D. K. Agrawal, Mater. Lett. 55, 234 (2002).

    Article  Google Scholar 

  35. F. Abe, M. Taneike, and K. Sawada, Int. J. Press. Vessel. Pip. 84, 3 (2007).

    Article  Google Scholar 

  36. P. Mayr and H. Cerjak, T. Indian I. Metals 63, 131 (2010).

  37. T. Kojima, K. Hayashi, and Y. Kajita, ISIJ Int. 35, 1284 (1995).

    Article  Google Scholar 

  38. Z. Nishiyama, Martensitic Transformation, Academic Press, USA (1978).

    Google Scholar 

  39. K. Laha, K. S. Chanddravathi, P. Parameswaran, B. S. Rao, and S. L. Mannan, Metallurg. Mater. Trans. A 38(A), 58 (2007).

    Article  Google Scholar 

  40. J. Onoro, J. Mater. Process. Technol. 180, 137 (2006).

    Article  Google Scholar 

  41. C. Pandey and M. M. Mahapatara, Proc. 23rd International Conference on Processing and Fabrication of Advanced Materials, IIT Roorkee, India (2014).

    Google Scholar 

  42. C. Pandey and M. M. Mahapatara, T. Indian I. Metals 69, 1657 (2016).

  43. J. Blach, L. Falat, and P. Sevc, Eng. Fail. Anal. 16, 1397 (2009).

    Article  Google Scholar 

  44. C. Pandey, N. Saini, M. M. Mahapatra, and P. Kumar, Eng. Fail. Anal. 71, 131 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, C., Giri, A., Mahapatra, M.M. et al. Characterization of microstructure of HAZs in as-welded and service condition of P91 pipe weldments. Met. Mater. Int. 23, 148–162 (2017). https://doi.org/10.1007/s12540-017-6394-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6394-5

Keywords

Navigation