Skip to main content
Log in

Model formulas for facilitating determination of concentration-dependent diffusion coefficients

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Several formulas for determining the concentration dependence of diffusion coefficients are introduced for a one-dimensional semi-infinite diffusion problem, applying the Boltzmann-Matano method to “S-shaped” concentration profiles approximated by model functions. The functions are expressed in terms of the Gauss error function, hyperbolic tangent, exponential, and inverse tangent. For all model profiles the corresponding formulas for the diffusion coefficient are calculated. Rapid estimates of the diffusion coefficient are also provided as simple expressions obtained by evaluating the formulas at the center of the concentration profile. The results for the individual profiles are compared, and it is demonstrated that even very similar profiles can lead to rather different diffusion coefficients, especially at low concentrations. Using two examples of different diffusion processes, it is demonstrated that the results can be employed to rapidly calculate diffusion coefficients. In addition, it is shown that a finite diffusion coefficient at low concentrations only occurs if the corresponding concentration profile decays at a Gaussian rate or faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Westrin and G. Zacchi, Chem. Eng. Sci. 46, 1911 (1991).

    Article  Google Scholar 

  2. L. D. Connell, Transport Porous Med. 36, 1 (1999).

    Article  Google Scholar 

  3. B. Kruczek, F. Shernshaki, S. Lashkari, R. Chapanian, and H. L. Frisch, J. Membrane Sci. 280, 29 (2006).

    Article  Google Scholar 

  4. R. Kahraman, M. Al-Harthi, and K. Loughlin, J. Adhesion, 83, 183 (2007).

    Article  Google Scholar 

  5. R. Chapanian, F. Shernshaki, and B. Kruczek, Can. J. Chem. Eng. 86, 711 (2008).

    Article  Google Scholar 

  6. L. Boltzmann, Wiedemmans Ann. Phys. 53, 959 (1894).

    Article  Google Scholar 

  7. C. Matano, Jpn. J. Phys. 8, 109 (1933).

    Google Scholar 

  8. M. Watanabe, Z. Horita, T. Sano, and M. Nemoto, Acta Metall. Mater. 42, 3389 (1994).

    Article  Google Scholar 

  9. M. A. Dayananda and Y. H. Sohn, Metall. Mater. Trans. A 30, 535 (1999).

    Article  Google Scholar 

  10. M. S. A. Karunaratne, P. Carter, and R. C. Reed, Acta Mater. 49, 861 (2001).

    Article  Google Scholar 

  11. M. Hattori, N. Goto, Y. Murata, T. Koyama, and M. Morinaga, Mater. Trans. 46, 163 (2005).

    Article  Google Scholar 

  12. K. M. Day, L. R. Ram-Mohan, and M. A. Dayananda, J. Phase Equilib. Diff. 26, 579 (2005).

    Article  Google Scholar 

  13. A. Ganguly, M. W. Barsoum, and R. D. Doherty, J. Amer. Ceram. Soc. 90, 2200 (2007).

    Article  Google Scholar 

  14. Z. Wang, P. R. Hua, S. Zhang, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, J. Alloy. Compd. 530, 152 (2012).

    Article  Google Scholar 

  15. S. J. Whitlow and R. P. Wool, Macromolecules 24, 5926 (1991).

    Article  Google Scholar 

  16. K. A. Schultz and E. G. Seebauer, J. Chem. Phys. 97, 6958 (1992).

    Article  Google Scholar 

  17. S. S. Mann, T. Seto, C. J. Barnes, and D. A. King, Surf. Sci. 261, 155 (1992).

    Article  Google Scholar 

  18. A. T. Loburets, A. G. Naumovets, and Y. S. Vedula, Surf. Sci. 399, 297 (1998).

    Article  Google Scholar 

  19. M. Šnábl, M. Ondrejcek, V. Cháb, Z. Chvoj, W. Stenzel, H. Conrad, and A. M. Bradshaw, J. Chem. Phys. 108, 4212 (1998).

    Article  Google Scholar 

  20. M. A. Zaluska-Kotur, S. Krukowski, Z. Romanovski, and L. A. Turski, Surf. Sci. 457, 357 (2000).

    Article  Google Scholar 

  21. M. Nowak and H. Behrens, Contrib. Mineral. Petrol. 126, 365 (1997).

    Article  Google Scholar 

  22. H. Behrens, Y. X. Zhang, and Z. G. Xu, Geochim. Cosmochim. Acta 68, 5139 (2004).

    Article  Google Scholar 

  23. H. Behrens and Y. Zhang, Contrib. Mineral. Petrol. 157, 765 (2009).

    Article  Google Scholar 

  24. E. S. Persikov, S. Newman, P. G. Bukhtiyarov, A. N. Nekrasov, and E. M. Stolper, Chem. Geol. 276, 241 (2010).

    Article  Google Scholar 

  25. J. Drchalová and R. Cerný, Int. Commun. Heat Mass, 25, 109 (1998).

    Article  Google Scholar 

  26. L. Pel, K. Kopinga, and E. F. Kaasschieter, J. Phys. D 33, 1380 (2000).

    Article  Google Scholar 

  27. M. I. Nizovtsev, S. V. Stankus, A. Sterlyagov, V. I. Terekhov, and R. A. Khairulin, Int. J. Heat Mass Transf. 51, 4161 (2008).

    Article  Google Scholar 

  28. Z. Pavlík, L. Fiala, J. Madera, M. Pavlíková, and R. Cerný, J. Frankl. Inst. 348, 1574 (2011).

    Article  Google Scholar 

  29. J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford (1975).

    Google Scholar 

  30. R. F. Sekerka, Progr. Mater. Sci. 49, 511 (2004).

    Article  Google Scholar 

  31. L. D. Hall, J. Chem. Phys. 21, 87 (1953).

    Article  Google Scholar 

  32. A. G. Nikitin, S. V. Spichak, Y. S. Vedula, and A. G. Naumovets, J. Phys. D 42, 055301 (2009).

    Article  Google Scholar 

  33. Y. Zhang, Rev. Mineral. Geochem. 72, 5 (2010).

    Article  Google Scholar 

  34. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford (1959).

    Google Scholar 

  35. S. K. Kailasam, J. C. Lacombe, and M. E. Glicksman, Metall. Mater. Trans. A 30, 2605 (1999).

    Article  Google Scholar 

  36. S. Mackwell, M. Bystricky, and C. Sproni, Phys. Chem. Minerals 32, 418 (2005).

    Article  Google Scholar 

  37. K. Woll, C. Holzapfel, and F. Mücklich, Intermetallics 18, 553 (2010).

    Article  Google Scholar 

  38. M. Vach and M. Svojtka, Metall. Mater. Trans. B 43, 1446 (2012).

    Article  Google Scholar 

  39. F. Ernst, A. Avishai, H. Kahn, X. Gu, G. M. Michal, and A. H. Heuer, Metall. Mater. Trans. A 40, 1768 (2009).

    Article  Google Scholar 

  40. G. Sant, A. Eberhardt, D. Bentz, and J. Weiss, J. Mater. Civil Eng. 22, 277 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Medved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medved, I., Černý, R. Model formulas for facilitating determination of concentration-dependent diffusion coefficients. Met. Mater. Int. 21, 907–912 (2015). https://doi.org/10.1007/s12540-015-4450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4450-6

Keywords

Navigation