Skip to main content
Log in

MSResG: Using GAE and Residual GCN to Predict Drug–Drug Interactions Based on Multi-source Drug Features

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Drug–drug interaction refers to taking the two drugs may produce certain reaction which may be a threat to patients’ health, or enhance the efficacy helpful for medical work. Therefore, it is necessary to study and predict it. In fact, traditional experimental methods can be used for drug–drug interaction prediction, but they are time-consuming and costly, so we prefer to use more accurate and convenient calculation methods to predict the unknown drug–drug interaction. In this paper, we proposed a deep learning framework called MSResG that considers multi-sources features of drugs and combines them with Graph Auto-Encoder to predicting. Firstly, the model obtains four feature representations of drugs from the database, namely, chemical substructure, target, pathway and enzyme, and then calculates the Jaccard similarity of the drugs. To balance different drug features, we perform similarity integration by finding the mean value. Then we will be comprehensive similarity network combined with drug interaction network, and encodes and decodes it using the graph auto-encoder based on residual graph convolution network. Encoding is to learn the potential feature vectors of drugs, which contain similar information and interaction information. Decoding is to reconstruct the network to predict unknown drug-drug interaction. The experimental results show that our model has advanced performance and is superior to other existing advanced methods. Case study also shows that MSResG has practical significance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Foucquier J, Guedj M (2015) Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3:e00149. https://doi.org/10.1002/prp2.149

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kusuhara H (2014) How far should we go? Perspective of drug-drug interaction studies in drug development. Drug Metab Pharmacokinet 29:227–228. https://doi.org/10.2133/dmpk.DMPK-14-PF-903

    Article  CAS  PubMed  Google Scholar 

  3. Wishart DS, Feunang YD, Guo AC et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  4. Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med 14:10. https://doi.org/10.1186/s12916-016-0553-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Qiu Y, Zhang Y, Deng Y et al (2022) A comprehensive review of computational methods for drug-drug interaction detection. IEEE/ACM Trans Comput Biol Bioinf 19:1968–1985. https://doi.org/10.1109/TCBB.2021.3081268

    Article  CAS  Google Scholar 

  6. He H, Chen G, Yu-Chian Chen C (2022) 3DGT-DDI: 3D graph and text based neural network for drug-drug interaction prediction. Brief Bioinform 23:bbac134. https://doi.org/10.1093/bib/bbac134

    Article  CAS  PubMed  Google Scholar 

  7. Yan C, Duan G, Zhang Y et al (2022) Predicting drug-drug interactions based on integrated similarity and semi-supervised learning. IEEE/ACM Trans Comput Biol Bioinform 19:168–179. https://doi.org/10.1109/TCBB.2020.2988018

    Article  CAS  PubMed  Google Scholar 

  8. Bag S, Kumar SK, Tiwari MK (2019) An efficient recommendation generation using relevant Jaccard similarity. Inf Sci 483:53–64. https://doi.org/10.1016/j.ins.2019.01.023

    Article  Google Scholar 

  9. Xia P, Zhang L, Li F (2015) Learning similarity with cosine similarity ensemble. Inf Sci 307:39–52. https://doi.org/10.1016/j.ins.2015.02.024

    Article  Google Scholar 

  10. Cheng F, Zhao Z (2014) Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J Am Med Inform Assoc 21:e278–e286. https://doi.org/10.1136/amiajnl-2013-002512

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39:640–651. https://doi.org/10.1109/CVPR.2015.7298965

    Article  PubMed  Google Scholar 

  12. Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. https://doi.org/10.48550/arXiv.1506.00019

  13. Liu J, Lei X, Zhang Y, Pan Y (2023) The prediction of molecular toxicity based on BiGRU and GraphSAGE. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2022.106524

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu X, Yang M (2022) Research on conversational machine reading comprehension based on dynamic graph neural network. J Integr Technol 11:67–78. https://doi.org/10.12146/j.issn.2095-3135.20211122001

  15. Ryu JY, Kim HU, Lee SY (2018) Deep learning improves prediction of drug-drug and drug-food interactions. Proc Natl Acad Sci USA 115:E4304–E4311. https://doi.org/10.1073/pnas.1803294115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng Y-H, Zhang S-W, Shi J-Y (2020) DPDDI: a deep predictor for drug-drug interactions. BMC Bioinform 21:419. https://doi.org/10.1186/s12859-020-03724-x

    Article  Google Scholar 

  17. Lin X, Quan Z, Wang Z-J, et al (2020) KGNN: knowledge graph neural network for drug-drug interaction prediction. In: Twenty-Ninth International Joint Conference on Artificial Intelligence, pp 2739–2745. https://doi.org/10.24963/ijcai.2020/380

  18. Han X, Xie R, Li X, Li J (2022) SmileGNN: drug-drug interaction prediction based on the SMILES and graph neural network. Life (Basel) 12:319. https://doi.org/10.3390/life12020319

    Article  CAS  PubMed  Google Scholar 

  19. Li G, Müller M, Thabet A, Ghanem B (2019) DeepGCNs: can GCNs go as deep as CNNs? International Conference on Computer Vision 2019. https://doi.org/10.48550/arXiv.1904.03751

  20. Wang F, Lei X, Liao B, Wu F-X (2022) Predicting drug-drug interactions by graph convolutional network with multi-kernel. Brief Bioinform 23:bbab511. https://doi.org/10.1093/bib/bbab511

  21. Kipf TN, Welling M (2016) Variational graph auto-encoders. In: Conference and Workshop on Neural Information Processing Systems. https://doi.org/10.48550/arXiv.1611.07308

  22. Zhang W, Chen Y, Liu F et al (2017) Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinform 18:18. https://doi.org/10.1186/s12859-016-1415-9

    Article  CAS  Google Scholar 

  23. Wan F, Hong L, Xiao A et al (2019) NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions. Bioinformatics 35:104–111. https://doi.org/10.1093/bioinformatics/bty543

    Article  CAS  PubMed  Google Scholar 

  24. Xie J, Zhao C, Ouyang J et al (2022) TP-DDI: a two-pathway deep neural network for drug-drug interaction prediction. Interdiscip Sci 14:895–905. https://doi.org/10.1007/s12539-022-00524-0

    Article  PubMed  Google Scholar 

  25. Schwarz K, Allam A, Perez Gonzalez NA, Krauthammer M (2021) AttentionDDI: Siamese attention-based deep learning method for drug-drug interaction predictions. BMC Bioinform 22:412. https://doi.org/10.1186/s12859-021-04325-y

    Article  Google Scholar 

  26. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucl Acids Res 44:D1202-1213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  28. Lei S, Lei X, Liu L (2022) Drug repositioning based on heterogeneous networks and variational graph autoencoders. Front Pharmacol 13:5431. https://doi.org/10.3389/fphar.2022.1056605

    Article  CAS  Google Scholar 

  29. Zhang Y, Lei X, Pan Y, Wu F-X (2022) Drug repositioning with GraphSAGE and clustering constraints based on drug and disease networks. Front Pharmacol 13:872785. https://doi.org/10.3389/fphar.2022.872785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang F, Ding Y, Lei X et al (2021) Human protein complex-based drug signatures for personalized cancer medicine. IEEE J Biomed Health Inform 25:4079–4088. https://doi.org/10.1109/JBHI.2021.3120933

    Article  PubMed  Google Scholar 

  31. Lahitani AR, Permanasari AE, Setiawan NA (2016) Cosine similarity to determine similarity measure: study case in online essay assessment. In: 2016 4th International Conference on Cyber and IT Service Management, 1–6. https://doi.org/10.1109/CITSM.2016.7577578

  32. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. https://doi.org/10.48550/arXiv.1609.02907

  33. An J, Guo L, Liu W et al (2021) IGAGCN: information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction. Neural Netw 143:355–367. https://doi.org/10.1016/j.neunet.2021.05.035

    Article  PubMed  Google Scholar 

  34. Zhu Y, Ma J, Yuan C, Zhu X (2022) Interpretable learning based dynamic graph convolutional networks for Alzheimer’s disease analysis. Inform Fus 77:53–61. https://doi.org/10.1016/j.inffus.2021.07.013

    Article  Google Scholar 

  35. Chipofya M, Tayara H, Chong KT (2021) Drug therapeutic-use class prediction and repurposing using graph convolutional networks. Pharmaceutics 13:1906. https://doi.org/10.3390/pharmaceutics13111906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ding Y, Lei X, Liao B, Wu F-X (2022) Predicting miRNA-disease associations based on multi-view variational graph auto-encoder with matrix factorization. IEEE J Biomed Health Inform 26:446–457. https://doi.org/10.1109/JBHI.2021.3088342

    Article  PubMed  Google Scholar 

  37. Zhang T, Gu J, Wang Z et al (2022) Protein subcellular localization prediction model based on graph convolutional network. Interdiscip Sci Comput Life Sci 14:937–946. https://doi.org/10.1007/s12539-022-00529-9

    Article  CAS  Google Scholar 

  38. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. IEEE Conf Comput Vis Pattern Recogn (CVPR) 2016:770–778. https://doi.org/10.1109/CVPR.2016.90

    Article  Google Scholar 

  39. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. https://doi.org/10.48550/arXiv.1412.6980

  40. Srivastava N, Hinton G, Krizhevsky A, et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958. http://jmlr.org/papers/v15/srivastava14a.html

  41. Smith LN (2017) Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) 464–472. https://doi.org/10.48550/arXiv.1506.01186

  42. Chiang W-L, Liu X, Si S, et al (2019) Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 257–266. https://doi.org/10.48550/arXiv.1905.07953

  43. Pei Y, Huang T, Ipenburg W, Pechenizkiy M (2022) ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks. Mach Learn 111:1–23. https://doi.org/10.1109/DSAA53316.2021.9564233

    Article  Google Scholar 

  44. Deng Y, Xu X, Qiu Y et al (2020) A multimodal deep learning framework for predicting drug–drug interaction events. Bioinformatics 36:4316–4322. https://doi.org/10.1093/bioinformatics/btaa501

    Article  CAS  PubMed  Google Scholar 

  45. Zhang P, Wang F, Hu J, Sorrentino R (2015) Label propagation prediction of drug-drug interactions based on clinical side effects. Sci Rep 5:12339. https://doi.org/10.1038/srep12339

    Article  PubMed  PubMed Central  Google Scholar 

  46. Abeywickrama T, Cheema M, Taniar D (2016) k-nearest neighbors on road networks: a journey in experimentation and in-memory implementation. Proc VLDB Endowm 9:492–503. https://doi.org/10.14778/2904121.2904125

  47. Lü L, Pan L, Zhou T et al (2015) Toward link predictability of complex networks. Proc Natl Acad Sci USA 112:2325–2330. https://doi.org/10.1073/pnas.1424644112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vilar S, Harpaz R, Uriarte E et al (2012) Drug-drug interaction through molecular structure similarity analysis. J Am Med Inform Assoc 19:1066–1074. https://doi.org/10.1136/amiajnl-2012-000935

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vilar S, Uriarte E, Santana L, Tatonetti N (2013) Detection of drug-drug interactions by modeling interaction profile fingerprints. PLoS ONE 8:e58321. https://doi.org/10.1371/journal.pone.0058321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Davis AP, Grondin CJ, Johnson RJ et al (2021) Comparative toxicogenomics database (CTD): update 2021. Nucl Acids Res 49:D1138–D1143. https://doi.org/10.1093/nar/gkaa891

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grants 62272288, 61972451, 61902230 and U22A2041, and the Shenzhen Science and Technology Program under Grant KQTD20200820113106007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujuan Lei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Lei, X., Chen, M. et al. MSResG: Using GAE and Residual GCN to Predict Drug–Drug Interactions Based on Multi-source Drug Features. Interdiscip Sci Comput Life Sci 15, 171–188 (2023). https://doi.org/10.1007/s12539-023-00550-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00550-6

Keywords

Navigation