Skip to main content
Log in

Structural Insight into Binding Mode of 9-Hydroxy Aristolochic Acid, Diclofenac and Indomethacin to PLA2

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Phospholipase A2 (PLA2) catalyzes the hydrolysis of phospholipids into arachidonic acid and lysophospholipids. Arachidonic acid is modified by cyclooxygenases into active compounds called eicosanoids that act as signaling molecules in a number of physiological processes. Excessive production of eicosanoids leads to several pathological conditions such as inflammation. In order to block the inflammatory effect of these compounds, upstream enzymes such as PLA2 are valid targets. In the present contribution, molecular dynamic analysis was performed to evaluate the binding of diclofenac, 9-hydroxy aristolochic acid (9-HAA) and indomethacin to PLA2. Obtained results revealed that 9-HAA could form a more stable complex with PLA2 when compared to diclofenac and indomethacin. Furthermore, analysis of intermolecular binding energy components indicated that hydrophobic interactions were dominant in binding process. On the basis of obtained data, inhibitors bearing fused rings with hydrogen acceptor/donor substituent(s) interacted with His48 and Asp49 residues of the active site. More affinity toward PLA2 might be envisaged through negatively charged moieties via interaction with Trp31, Lys34 and Lys69.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057

    CAS  PubMed  Google Scholar 

  2. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69(1):145–182

    Article  CAS  PubMed  Google Scholar 

  3. Davidson J, Rotondo D, Rizzo M, Leaver H (2012) Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism. Br J Pharmacol 166(4):1193–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murakami M, Kambe T, Shimbara S, Kudo I (1999) Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem 274(5):3103–3115

    Article  CAS  PubMed  Google Scholar 

  5. Smith WL, Marnett LJ, DeWitt DL (1991) Prostaglandin and thromboxane biosynthesis. Pharmacol Ther 49(3):153–179

    Article  CAS  PubMed  Google Scholar 

  6. Smith WL (1992) Prostanoid biosynthesis and mechanisms of action. Am J Physiol-Renal 263(2):F181–F191

    Article  CAS  Google Scholar 

  7. Bonventre JV, Huang Z, Taheri MR, O’Leary E, Li E, Moskowitz MA et al (1997) Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390(6660):622–625

    Article  CAS  PubMed  Google Scholar 

  8. Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I (2000) Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2biosynthesis. J Biol Chem 275(42):32775–32782

    Article  CAS  PubMed  Google Scholar 

  9. Ma W, Eisenach J (2003) Cyclooxygenase 2 in infiltrating inflammatory cells in injured nerve is universally up-regulated following various types of peripheral nerve injury. Neuroscience 121(3):691–704

    Article  CAS  PubMed  Google Scholar 

  10. Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O’Donnell VB, Kuhn H et al (2010) Molecular enzymology of lipoxygenases. Arch Biochem Biophys 503(2):161–174

    Article  CAS  PubMed  Google Scholar 

  11. Yang K, Bai H, Ouyang Q, Lai L, Tang C (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol Syst Biol 4(1):228–241

  12. Magrioti V, Kokotos G (2010) Phospholipase A2 inhibitors as potential therapeutic agents for the treatment of inflammatory diseases. Expert Opin Ther Pat 20(1):1–18

    Article  CAS  PubMed  Google Scholar 

  13. Webb NR (2005) Secretory phospholipase A2 enzymes in atherogenesis. Curr Opin Lipidol 16(3):341–344

    Article  CAS  PubMed  Google Scholar 

  14. Quach ND, Arnold RD, Cummings BS (2014) Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmaco 90(4):338–348

    Article  CAS  Google Scholar 

  15. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548):1871–1875

    Article  CAS  PubMed  Google Scholar 

  16. Arni R, Ward R (1996) Phospholipase A 2—a structural review. Toxicon 34(8):827–841

    Article  CAS  PubMed  Google Scholar 

  17. Valentin E, Lambeau G (2000) What can venom phospholipases A 2 tell us about the functional diversity of mammalian secreted phospholipases A 2? Biochimie 82(9):815–831

    Article  CAS  PubMed  Google Scholar 

  18. Carvalho B, Santos J, Xavier B, Almeida J, Resende L, Martins W et al (2013) Snake venom PLA 2s inhibitors isolated from Brazilian plants: synthetic and natural molecules. Biomed Res Int. doi:10.1155/2013/153045

  19. Damico DC, Vassequi-Silva T, Torres-Huaco F, Nery-Diez A, de Souza R, Da Silva S et al (2012) LmrTX, a basic PLA 2 (D49) purified from Lachesis muta rhombeata snake venom with enzymatic-related antithrombotic and anticoagulant activity. Toxicon 60(5):773–781

    Article  CAS  PubMed  Google Scholar 

  20. Damico DC, da Cruz Höfling MA, Cintra M, Leonardo MB, Calgarotto AK, da Silva SL et al (2008) Pharmacological study of edema and myonecrosis in mice induced by venom of the bushmaster snake (Lachesis muta muta) and its basic Asp49 phospholipase A2 (LmTX-I). Protein J 27(6):384–391

    Article  CAS  PubMed  Google Scholar 

  21. Vasilakaki S, Barbayianni E, Leonis G, Papadopoulos MG, Mavromoustakos T, Gelb MH et al (2016) Development of a potent 2-oxoamide inhibitor of secreted phospholipase A 2 guided by molecular docking calculations and molecular dynamics simulations. Bioorg Med Chem 24(8):1683–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh N, Jabeen T, Sharma S, Somvanshi R, Dey S, Srinivasan A et al (2006) Specific binding of non-steroidal anti-inflammatory drugs (NSAIDs) to phospholipase A2: structure of the complex formed between phospholipase A2 and diclofenac at 2.7 Å resolution. Acta Crystallogr D 62(4):410–416

    Article  PubMed  Google Scholar 

  23. Singh N, Kumar RP, Kumar S, Sharma S, Mir R, Kaur P et al (2009) Simultaneous inhibition of anti-coagulation and inflammation: crystal structure of phospholipase A2 complexed with indomethacin at 1.4 Å resolution reveals the presence of the new common ligand-binding site. J Mol Recognit 22(6):437–445

    Article  CAS  PubMed  Google Scholar 

  24. Katzung BG, Masters SB, Trevor AJ (2004) Basic & clinical pharmacology. Lange Medical Books/McGraw-Hill, New York

  25. Morphy R, Kay C, Rankovic Z (2004) From magic bullets to designed multiple ligands. Drug Discov Today 9(15):641–651

    Article  CAS  PubMed  Google Scholar 

  26. Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 110(2):135–370

    Article  CAS  PubMed  Google Scholar 

  27. Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  28. Chandra V, Jasti J, Kaur P, Srinivasan A, Betzel C, Singh T (2002) Structural basis of phospholipase A2 inhibition for the synthesis of prostaglandins by the plant alkaloid aristolochic acid from a 1.7 Å crystal structure. Biochemistry 41(36):10914–10919

    Article  CAS  PubMed  Google Scholar 

  29. Kini RM (1997) Venom phospholipase a2 enzymes. Sect. chap 1. Wiley

  30. Yu B-Z, Rogers J, Nicol GR, Theopold KH, Seshadri K, Vishweshwara S et al (1998) Catalytic significance of the specificity of divalent cations as KS* and k cat* cofactors for secreted phospholipase A2. Biochemistry 37(36):12576–12587

    Article  CAS  PubMed  Google Scholar 

  31. de Oliveira TC, de Amorim HLN, Guimarães JA (2007) Interfacial activation of snake venom phospholipases A 2 (svPLA 2) probed by molecular dynamics simulations. J Mol Struct-Theochem 818(1):31–41

    Article  Google Scholar 

  32. Heinrich M, Chan J, Wanke S, Neinhuis C, Simmonds MS (2009) Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2—a global assessment based on bibliographic sources. J Ethnopharmacol 125(1):108–144

    Article  CAS  PubMed  Google Scholar 

  33. MacKerell AD, Bashford D, Bellott M, Dunbrack R, Evanseck JD, Field MJ et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  PubMed  Google Scholar 

  34. MacKerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400–1415

    Article  CAS  PubMed  Google Scholar 

  35. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32(11):2359–2368

    Article  CAS  PubMed  Google Scholar 

  36. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Neese F (2011) ORCA 2.8. 0-An ab initio, DFT and semiempirical SCF-MO package. Bonn, Germany

  38. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  39. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford university press

  40. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4(1):116–122

    Article  CAS  PubMed  Google Scholar 

  41. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101

    Article  PubMed  Google Scholar 

  42. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190

    Article  CAS  Google Scholar 

  43. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  44. Wlodek ST, Clark TW, Scott LR, McCammon JA (1997) Molecular dynamics of acetylcholinesterase dimer complexed with tacrine. J Am Chem Soc 119(40):9513–9522

    Article  CAS  Google Scholar 

  45. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676

    Article  CAS  PubMed  Google Scholar 

  47. Lindahl M, Tagesson C (1993) Selective inhibition of group II phospholipase A2 by quercetin. Inflammation 17(5):573–582

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial supports of this project by Hamadan University of Medical Sciences are acknowledged. We are also grateful for the support of the Ardabil University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nima Razzaghi-Asl or Ahmad Ebadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, M., Firuzi, O., Miri, R. et al. Structural Insight into Binding Mode of 9-Hydroxy Aristolochic Acid, Diclofenac and Indomethacin to PLA2 . Interdiscip Sci Comput Life Sci 10, 400–410 (2018). https://doi.org/10.1007/s12539-016-0197-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0197-0

Keywords

Navigation