Skip to main content
Log in

Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes

  • Original Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

DNA topoisomerase I (topo I) and II (topo II) are essential enzymes that solve the topological problems of DNA by allowing DNA strands or double helices to pass through each other during cellular processes such as replication, transcription, recombination, and chromatin remodeling. Their critical roles make topoisomerases an attractive drug target against cancer. The present molecular docking study provides insights into the inhibition of topo I and II by curcumin natural derivatives. The binding modes suggested that curcumin natural derivatives docked at the site of DNA cleavage parallel to the axis of DNA base pairing. Cyclocurcumin and curcumin sulphate were predicted to be the most potent inhibitors amongst all the curcumin natural derivatives docked. The binding modes of cyclocurcumin and curcumin sulphate were similar to known inhibitors of topo I and II. Residues like Arg364, Asn722 and base A113 (when docked to topo I-DNA complex) and residues Asp479, Gln778 and base T9 (when docked to topo II-DNA complex) seem to play important role in the binding of curcumin natural derivatives at the site of DNA cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A.B., Aggarwal, B.B. 2008b. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett 267, 133–164.

    Article  CAS  PubMed  Google Scholar 

  2. Anand, P., Thomas, S.G., Kunnumakkara, A.B., Sundaram, C., Harikumar, K.B. et al. 2008a. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 76, 1590–1611.

    Article  CAS  PubMed  Google Scholar 

  3. Baird, C.L., Gordon, M.S., Andrenyak, D.M., Marecek, J.F., Lindsley, J.E. 2001. The ATPase reaction cycle of yeast DNA topoisomerase II. Slow rates of ATP resynthesis and P(i) release. J Biol Chem 276, 27893–27898.

    Article  CAS  PubMed  Google Scholar 

  4. Beck, L.S., Deguzman, L., Lee, W.P., Xu, Y., Siegel, M.W., Amento, E.P. 1993. One systemic administration of transforming growth factor-beta 1 reverses ageor glucocorticoid-impaired wound healing. J Clin Invest 92, 2841–2849.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Belani, C.P., Doyle, L.A., Aisner, J. 1994. Etoposide: Current status and future perspectives in the management of malignant neoplasms. Cancer Chemoter Pharmacol 34, 1180–1126.

    Article  Google Scholar 

  6. Champoux, J.J. 2000. Structure-based analysis of the effects of camptothecin on the activities of human topoisomerase I. Ann, N.Y., Acad Sci 922, 56–64.

    Article  CAS  Google Scholar 

  7. Champoux, J.J. 2001. DNA topoisomerases: Structure, function, and mechanism. Annu Rev Biochem 70, 369–413.

    Article  CAS  PubMed  Google Scholar 

  8. Chow, K.C., Macdonald, T.L., Ross, W.E. 1988. DNA binding by epipodophyllotoxins and N-acyl anthracyclines: Implications for mechanism of topoisomerase inhibition. Mol Pharmacol 34, 467–473.

    CAS  PubMed  Google Scholar 

  9. Gellert, M. 1981. DNA topoisomerases. Annu Rev Biochem 50, 879–910.

    Article  CAS  PubMed  Google Scholar 

  10. Gupta, E., Mick, R., Ramirez, J., Wang, X., Lestingi, T.M., Vokes, E.E., Ratain, M.J. 1997. Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J Clin Oncol 15, 1502–1510.

    CAS  PubMed  Google Scholar 

  11. Kumar, A., Bora, U. 2011. In silico inhibition studies of NF-κB p50 subunit by curcumin and its natural derivatives. Med Chem Res. doi:110.1007/s00044-011-9873-0.

    Google Scholar 

  12. Lin, J.K. 2007. Molecular targets of curcumin. Adv Exp Med Biol 595, 227–243.

    Article  PubMed  Google Scholar 

  13. López-Lázaro, M., Willmore, E., Jobson, A., Gilroy, K.L., Curtis, H., Padget, K., Austin, C.A. 2007. Curcumin induces high levels of topoisomerase I- and II-DNA complexes in K562 leukemia cells. J Nat Prod 70, 1884–1888.

    Article  PubMed  Google Scholar 

  14. Maheshwari, R.K., Singh, A.K., Gaddipati, J., Srimal, R.C. 2006. Multiple biological activities of curcumin: a short review. Life Sci 78, 2081–2087.

    Article  CAS  PubMed  Google Scholar 

  15. Martín-Cordero, C., López-Lázaro, M., Gálvez, M., Ayuso, M.J. 2003. Curcumin as a DNA topoisomerase II poison. J Enzyme Inhib Med Chem 18, 505–509.

    Article  PubMed  Google Scholar 

  16. Morris, G.M., Goodsell, G.S., Halliday, R.S., Huey, R., Hart, W.E. et al. 1998. Automated docking using Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19, 1639–1662.

    Article  CAS  Google Scholar 

  17. Mosieniak, G., Sliwinska, M., Piwocka, K., Sikora, E. 2006. Curcumin abolishes apoptosis resistance of calcitriol-differentiated HL-60 cells. FEBS Lett 580, 4653–4660.

    Article  CAS  PubMed  Google Scholar 

  18. Osheroff, N. 1989. Effect of antineoplastic agents on the DNA cleavage/religation equlibrium of eukaryotic topoisomerase II: Inhibition of DNA religation by etoposide. Biochemistry 28, 6157–6160.

    Article  CAS  PubMed  Google Scholar 

  19. Robinson, H.M., Bratlie-Thoresen, S., Brown, R., Gillespie, D.A. 2007. Chk1 is required for G2/M checkpoint response induced by the catalytic topoisomerase II inhibitor ICRF-193. Cell Cycle 6, 1265–1267.

    Article  CAS  PubMed  Google Scholar 

  20. Salerno, S., Da Settimo, F., Taliani, S., Simorini, F., La Motta, C., Fornaciari, G., Marini, A.M. 2010. Recent advances in the development of dual topoisomerase I and II inhibitors as anticancer drugs. Curr Med Chem 17, 4270–4290.

    Article  CAS  PubMed  Google Scholar 

  21. Sanner, M.F. 1999. Python: a programming language for software integration and development. J Mol Graph Model 17, 57–61.

    CAS  PubMed  Google Scholar 

  22. Staker, B.L., Hjerrild, K., Feese, M.D., Behnke, C.A. et al. 2002. The mechanism of topoisomerase I poisoning by a camptothecin analog. PNAS 99, 15387–15392.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wang, J.C. 1985. DNA topoisomerases. Annu Rev Biochem 54, 665–697.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, J.C. 2002. Cellular roles of DNA topoisomerases: A molecular perspective. Nat Rev Mol Cell Biol 3, 430–440.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Bora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Bora, U. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes. Interdiscip Sci Comput Life Sci 6, 285–291 (2014). https://doi.org/10.1007/s12539-012-0048-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-012-0048-6

Key words

Navigation