Skip to main content

Advertisement

Log in

Spatial scale influences diversity patterns of free-living nematode assemblages in coral degradation zones from the Caribbean Sea

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Diversity of marine nematodes in coral degradation zones (CDZs) has been poorly studied despite of its contribution to global coral reef diversity; additionally, effects of spatial scales on nematode assemblages are also largely unknown. To fill this gap, we studied the marine nematode assemblages in CDZs from two coral reefs in the Caribbean Sea to describe the diversity, test the effects of spatial scales, and explore if there were adaptive biological trait combinations. We sampled 2 reefs (Ballenatos and Punta Francés), 6 sites, and 20 dead coral piles in a fully nested design identifying the nematodes to species level. CDZs harbored a diverse nematode assemblage of 112 species with large spatial turnover. Differences between reefs in abundance and species density were probably related to differential energy availability, with Punta Francés receiving larger input of material and energy from land. The spatial scale had a significant effect on the species richness, whereas differences in species composition were mainly driven by the scale at which ecological drivers operated (10−1 m for interstitial heterogeneity vs. 105 m for dispersal). Geographical distances in the order of 180 km likely constituted barriers to nematode dispersal and as such promoted assemblage dissimilarity. Our evidence indicated that a particular set of biological traits favored the adaptation of nematodes to CDZs, namely a distinctive combination of armed stoma, ornamented cuticle, and conical tail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alongi DM (1986) Population structure and trophic composition of the free-living nematodes inhabiting carbonate sands of Davies Reef, Great Barrier Reef, Australia. Aust J Mar Freshw Res 37:609–619

    Article  Google Scholar 

  • Alves AS, Veríssimo H, Costa MJ, Marques JC (2014) Taxonomic resolution and biological traits analysis (BTA) approaches in estuarine free-living nematodes. Estuar Coast Shelf Sci 138:69–78

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. In: PRIMER-E. Plymouth, UK

    Google Scholar 

  • Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ et al (2011) Navigating the multiple meanings of β-diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    Article  PubMed  Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R et al (2012) The magnitude of global marine species diversity. Curr Biol 22:1–14

    Article  CAS  Google Scholar 

  • Armenteros M, Ruiz-Abierno A, Fernández-Garcés R, Pérez-García JA, Díaz-Asencio L, Vincx M, Decraemer W (2009a) Biodiversity patterns of free-living marine nematodes in a tropical bay: Cienfuegos, Caribbean Sea. Estuar Coast Shelf Sci 85:179–189

    Article  CAS  Google Scholar 

  • Armenteros M, Vincx M, Decraemer W (2009b) Cienfuegia gen. nov. (Xyalidae) and Pseudoterschellingia gen. nov. (Linhomoeidae), two new genera of free-living marine nematodes from the Caribbean Sea. J Nat Hist 43:1067–1081

    Article  Google Scholar 

  • Armenteros M, Ruiz-Abierno A, Sosa Y, Pérez-García JA (2012) Habitat heterogeneity effects on macro-and meiofauna (especially nematodes) in Punta Francés coral reef (SW Cuban Archipelago). Rev Invest Mar 32:50–61

    Google Scholar 

  • Armenteros M, Saladrigas D, González-Casuso L, Estevez ED, Kowalewski M (2018) The role of habitat selection on the diversity of macrobenthic communities in three gulfs of the Cuban Archipelago. Bull Mar Sci 94:249–268

    Google Scholar 

  • Benedetti-Cecchi L, Iken K, Konar B, Cruz-Motta JJ, Knowlton N, Pohle G, Castelli A et al (2010) Spatial relationships between polychaete assemblages and environmental variables over broad geographical scales. PLoS One 5:e2946

    Article  CAS  Google Scholar 

  • Bik HM, Thomas WK, Lunt DH, Lambshead PJD (2010) Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida). BMC Evol Biol 10:389

    Article  PubMed  PubMed Central  Google Scholar 

  • Boström C, Törnroos A, Bonsdorff E (2010) Invertebrate dispersal and habitat heterogeneity: expression of biological traits in a seagrass landscape. J Exp Mar Biol Ecol 390:106–117

    Article  Google Scholar 

  • Boucher G (1997) Structure and biodiversity of nematode assemblages in the SW Lagoon of New Caledonia. Coral Reefs 16:177–186

    Article  Google Scholar 

  • Callens M, Gheerardyn H, Ndaro SGM, De Troch M, Vanreusel A (2012) Harpacticoid copepod colonization of coral fragments in a tropical reef lagoon (Zanzibar, Tanzania). J Mar Biol Assoc UK 92:1535–1545

    Article  Google Scholar 

  • Cao Y, Williams DD, Williams NE (1998) How important are rare species in aquatic community ecology and bioassessment? Limnol Oceanogr 43:1403–1409

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v6: User Manual/Tutorial. Primer-E, Ltd, Plymouth

    Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. http://purl.oclc.org/estimates

    Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond Ser B Biol Sci 345:101–118

    Article  CAS  Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ, Lin S-Y, Mao C-X, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21

    Article  Google Scholar 

  • Côté IM, Knowlton N (2014) Coral reef ecosystems. A decade of discoveries. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer, Sunderland, pp 299–314

    Google Scholar 

  • Crist TO, Veech JA (2006) Additive partitioning of rarefaction curves and species–area relationships: unifying α-, β- and γ-diversity with sample size and habitat area. Ecol Lett 9:923–932

    Article  PubMed  Google Scholar 

  • Danovaro R, Bianchelli S, Gambi MC, Mea M, Zeppilli D (2009) α-, β-, γ-, δ- and ε-diversity of deep-sea nematodes in canyons and open slopes of Northeast Atlantic and Mediterranean margins. Mar Ecol Progr Ser 396:197–209

    Article  Google Scholar 

  • De Jesús-Navarrete A (2007) Nematodos de los arrecifes de Isla Mujeres y Banco Chinchorro, Quintana Roo, México. Rev Biol Mar Oceanogr 42:193–200

    Article  Google Scholar 

  • De Troch M, Raes M, Muthumbi A, Gheerardyn H, Vanreusel A (2008) Spatial diversity of nematode and copepod genera of the coral degradation zone along the Kenyan coast, including a test for the use ofhigher-taxon surrogacy. African J Mar Sci 30:25–33

    Article  Google Scholar 

  • Decraemer W, Gourbault NE, Helléouet MN (2001) Cosmopolitanism among nematodes: examples from Epsilonematidae. Vie Milieu 51:11–19

    Google Scholar 

  • Decraemer W, Coomans A, Baldwin JG (2013) Morphology of nematoda. In: Schmidt-Rhaesa A (ed) Handbook of Zoology. Gastrotricha, Cycloneuralia and Gnathifera. Volumen 2. Nematoda. De Gruyter, Göttingen, Germany, pp 1–59

    Google Scholar 

  • Flach PZS, Ozorio CP, Melo AS (2012) Alpha and beta components of diversity of freshwater nematodes at different spatial scales in subtropical coastal lakes. Fundam Appl Limnol 108:249–258

    Article  Google Scholar 

  • Fontaneto D, Barraclough TG, Chen K, Ricci C, Herniou EA (2008) Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Mol Ecol 17:3136–3146

    Article  CAS  PubMed  Google Scholar 

  • Gaston KJ, Spicer JI (2004) Biodiversity. An introduction (2nd ed.). Blackwell, Hoboken

    Google Scholar 

  • Giere O (2009) Meiobenthology. The microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin

    Google Scholar 

  • Gobin JF (2007) Free-living marine nematodes of hard bottom substrates in Trinidad and Tobago, West Indies. Bull Mar Sci 81:73–84

    Google Scholar 

  • Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity. Frontiers in measurement and assessment. Oxford University Press, Oxford, pp 39–54

    Google Scholar 

  • Hodda M (1990) Variation in estuarine littoral nematode populations over three spatial scales. Estuar Coast Shelf Sci 30:325–340

    Article  Google Scholar 

  • Izsak C, Price ARG (2001) Measuring beta-diversity using a taxonomic similarity index, and its relation to spatial scale. Mar Ecol Progr Ser 215:69–77

    Article  Google Scholar 

  • Laurie H, Perrier E (2011) Beyond species area curves: application of a scale-free measure for spatial variability of species richness. Oikos 120:966–978

    Article  Google Scholar 

  • Li J, Vincx M, Herman PMJ, Heip C (1997) Monitoring meiobenthos using cm-, m- and km-scales in the Southern Bight of the North Sea. Mar Environ Res 43:265–278

    Article  Google Scholar 

  • Liao J-X, Yeh H-M, Mok H-K (2015) Meiofaunal communities in a tropical seagrass bed and adjacent unvegetated sediments with note on sufficient sample size for determining local diversity indices. Zool Stud 54:14

    Article  CAS  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Moens T, Braeckman U, Derycke S, Fonseca G, Gallucci F, Gingold R, Guilini K et al. (2013) Ecology of free-living marine nematodes. In: Schmidt-Rhaesa A (ed) Handbook of Zoology. Gastrotricha, Cycloneuralia and Gnathifera. Volumen 2: Nematoda. De Gruyter, Göttingen, Germany, pp 109–152

  • Mokievsky V, Azovsky AI (2002) Re-evaluation of species diversity patterns of free-living marine nematodes. Mar Ecol Progr Ser 238:101–108

    Article  Google Scholar 

  • Pérez-García JA, Ruiz-Abierno A, Armenteros M (2015) Does morphology of host marine macroalgae drive the ecological structure of epiphytic meiofauna? J Mar Biol Oceanogr 4:1–7

    Article  Google Scholar 

  • Platt HM, Warwick RM (1983) Free-living marine nematodes. Part I. British Enoplids. In: Synopses of the British Fauna (New Series), vol 28. The Linnean Society of London and The Estuarine and brackish-Water Sciences Association, Cambridge

    Google Scholar 

  • Platt HM, Warwick RM (1988) Free-Living Marine Nematodes. Part II. British Chromadorids. Vol. 38. 40 vols. In: Synopses of the British Fauna (New Series). The Linnean Society of London and The Estuarine and Brackish-water Sciences Association, Leiden

    Google Scholar 

  • Raes M, De Troch M, Ndaro SGM, Muthumbi A, Guilini K, Vanreusel A (2007) The structuring role of microhabitat type in coral degradation zones: a case study with marine nematodes from Kenya and Zanzibar. Coral Reefs 26:113–126

    Article  Google Scholar 

  • Raes M, Decraemer W, Vanreusel A (2008) Walking with worms: coral-associated epifaunal nematodes. J Biogeogr 35:2207–2022

    Article  Google Scholar 

  • Rosindell J, Cornell SJ (2013) Universal scaling of species-abundance distributions across multiple scales. Oikos 122:1101–1111

    Article  Google Scholar 

  • Ruiz-Abierno A, Armenteros M (2017) Coral reef habitats strongly influence the diversity of macro and meiobenthos in the Caribbean. Mar Biodivers 47:101–111

    Article  Google Scholar 

  • Sandulli R, Semprucci F, Balsamo M (2014) Taxonomic and functional biodiversity variations of meiobenthic and nematode assemblages across an extreme environment: a study case in a Blue Hole Cave. Italian J Zool 81:508–516

    Article  Google Scholar 

  • Schratzberger M, Warr K, Rogers SI (2007) Functional diversity of nematode communities in the southwestern North Sea. Mar Environ Res 63:368–389

    Article  CAS  PubMed  Google Scholar 

  • Semprucci F, Colantoni P, Baldelli G, Rocchi M, Balsamo M (2010) The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Mar Ecol 31:592–607

    Article  Google Scholar 

  • Semprucci F, Colantoni P, Baldelli G, Sbrocca C, Rocchi M, Balsamo M (2013) Meiofauna associated with coral sediments in the Maldivian subtidal habitats (Indian Ocean). Mar Biodivers 43:189–198

    Article  Google Scholar 

  • Semprucci F, Colantoni P, Sbrocca C, Baldelli G, Balsamo M (2014) Spatial patterns of distribution of meiofaunal and nematode assemblages in the Huvadhoo Lagoon (Maldives, Indian Ocean). J Mar Biol Assoc UK 94:1377–1385

    Article  Google Scholar 

  • Semprucci F, Frontalini F, Losi V, Armynot du Châtelet E, Cesaroni L, Sandulli R, Coccioni R, Balsamo M (2018a) Biodiversity and distribution of the meiofaunal community in the reef slopes of the Maldivian archipelago (Indian Ocean). Mar Environ Res 139:19–26

    Article  CAS  PubMed  Google Scholar 

  • Semprucci F, Cesaroni L, Guidi L, Balsamo M (2018b) Do the morphological and functional traits of free-living marine nematodes mirror taxonomical diversity? Mar Environ Res 135:114–122

    Article  CAS  PubMed  Google Scholar 

  • Smythe AB (2015) Evolution of feeding structures in the marine nematode order Enoplida. Integr Comp Biol:1–13

  • Storch D, Bohdalkova E, Okie J (2018) The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol Lett 21:920–937

    Article  PubMed  Google Scholar 

  • Tarjan AC (1980) An illustrate guide to the marine nematodes. Institute of Food and Agricultural Sciences, University of Florida, Gainesville

    Google Scholar 

  • Tchesunov A (2013) Order Desmodorida De Coninck, 1965. In: Schmidt-Rhaesa A (ed) Handbook of zoology. Gastrotricha, Cycloneuralia and Gnathifera. Volumen 2: Nematoda. De Gruyter, Göttingen, Germany, pp 399–434

  • Thistle D, Lambshead PJD, Sherman KM (1995) Nematode tail-shape groups respond to environmental differences in the deep sea. Vie Milieu 45:107–115

    Google Scholar 

  • Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Wallingford, pp 187–195

    Google Scholar 

  • Warwick RM, Platt HM, Somerfield PJ (1998) Free-living marine nematodes. Part III. Monhysterids. In: Synopses of the British Fauna (New Series), vol 53. The Linnean Society of London and The Estuarine and Coastal Sciences Association, Shrewsbury

    Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  • Wiens JJ (2011) The causes of species richness patterns across space, time, and clades and the role of "ecological limits". Q Rev Biol 86:75–96

    Article  PubMed  Google Scholar 

  • Wieser W (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Ark f Zool 4(26):439–484

    Google Scholar 

Download references

Acknowledgments

We appreciate the comments by two anonymous referees that improved the manuscript. We thank Idea Wild fund for providing equipment used during this research.

Funding

This study was partially funded by The Ocean Foundation though the Proyecto 3 Golfos Initiative and by Dalio Family Foundation through a grant to A Apprill and A Santoro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Andrés Pérez-García.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable.

Data availability

Data generated or analyzed during this study are included in this published article and its supplementary information files.

Additional information

Communicated by M. Schratzberger

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-García, J.A., Marzo-Pérez, D. & Armenteros, M. Spatial scale influences diversity patterns of free-living nematode assemblages in coral degradation zones from the Caribbean Sea. Mar Biodiv 49, 1831–1842 (2019). https://doi.org/10.1007/s12526-019-00945-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-019-00945-z

Keywords

Navigation