Skip to main content
Log in

Siphonophores of the Chiloé Inland Sea: biodiversity, spatial distribution and environmental association

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

This study identifies the abundance and spatial distribution of siphonophores collected during spring of 2011 between the Reloncaví Fjord and the Boca del Guafo Passage, in the Chiloé Inland Sea (CIS), Chile. Nine species of siphonophore were identified (three Physonectae and six Calycophorae), of which Agalma elegans, Cordagalma ordinatum and Lensia meteori were recorded for the first time in the waters of the CIS. The dominant species were Muggiaea atlantica (88.0%) and Lensia conoidea (9.5%). The highest occurrence frequency was recorded for M. atlantica (81.2%) and L. conoidea (62.5%). Eudoxids were collected only for M. atlantica (52.1%), L. conoidea (43.7%) and Dimophyes arctica (4.2%). The highest siphonophore densities were found in the northern microbasin (Reloncaví Fjord, Reloncaví and Ancud gulfs), an area characterised by a predominance of estuarine waters (greater vertical stratification, lower temperatures and salinity, and a higher concentration of dissolved oxygen). The vertical distribution patterns showed that M. atlantica is found throughout the water column in the northern microbasin, though with preference for the depths of 0–50 m. In the southern microbasin it was distributed mainly in deeper waters (>50 m). L. conoidea tends to avoid the surface estuarine layer (0–25 m) and is mainly distributed through deeper layers (>25 m). The association with environmental variables shows that temperature and dissolved oxygen have a significantly influence over dominant species. Siphonophorae community showed unimodal responses to the environmental gradients and high interspecific variability compared with previous campaigns in the same geographical area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acuña JL, López-Urrutia Á, Colin S (2011) Faking giants: the evolution of high prey clearance rates in jellyfishes. Science 333:1627–1629

    Article  Google Scholar 

  • Alvariño A (1985) Predation in the plankton realm; mainly with reference to fish larvae. Invest Mar Center Interdisc Cienc Mar 2:1–122

    Google Scholar 

  • Arai MN (2005) Predation on pelagic coelenterates: a review. J Mar Biol Assoc U K 85:523–536

    Article  Google Scholar 

  • Balbontín F, Bernal R (1997) Distribución y abundancia del ictioplancton en la zona austral de Chile. Cienc Tecnol Mar 20:155–163

    Google Scholar 

  • Baxter EJ, Rodger HD, McAllen R, Doyle TK (2011) Gill disorders in marine-farmed salmon: investigating the role of hydrozoan jellyfish. Aquac Environ Interact 1:245–257

    Article  Google Scholar 

  • Brotz L, Cheung WWL, Kleisner K, Pakhomov E, Pauly D (2012) Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia 690(1):3–20

    Article  Google Scholar 

  • Canepa A, Sastre S, Piñol L, Fuentes V (2013) Thirty years of jellyfish blooms in Catalonia: narratives and empirical evidences. In: Fourth International Jellyfish Bloom Symposium, Hiroshima, 5-7 June 2013

  • Canepa A, Fuentes V, Sabatés A, Piraino S, Boero F, Gili J-M (2014) Pelagia noctiluca in the Mediterranean Sea. In: Lucas CH, Pitt KA (eds) Jellyfish blooms. Springer, Dordrecht, pp 237–266

    Chapter  Google Scholar 

  • Carpenter J (1965) The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol Oceanogr 10:141–143

    Article  CAS  Google Scholar 

  • Condon RH, Graham WM, Pitt KA, Cathy H (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62:160–169

    Article  Google Scholar 

  • Condon RH, Duarte CM, Pitt KA, Robinson KL, Lucas CH, Sutherland KH, Mianzan HW, Bogeberg M, Purcell JE, Decker MB, Uye S, Madin LP, Brodeur RD, Haddock SHD, Malej A, Parry GD, Eriksen E, Quiñones J, Acha M, Harvey M, Arthur JM, Graham WM (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proc Natl Acad Sci U S A 110:1000–1005

    Article  CAS  Google Scholar 

  • De Donno A, Idolo A, Bagordo F, Grassi T, Leomanni A, Serio F, Guido M, Canitano M, Zampardi S, Boero F, Piraino S (2014) Impact of stinging jellyfish proliferations along south Italian coasts: human health hazards, treatment and social costs. Int J Environ Res Public Health 11:2488–2503

    Article  Google Scholar 

  • Fosså JH, Flood PR, Olsen AB, Jensen F (2003) Sma og usynlige, men plagsomme maneter av arten Muggiaea atlantica. Fisken Havet 2:99–103

    Google Scholar 

  • Hamish DR, Henry L, Mitchell SO (2011) Non-infectious gill disorders of marine salmonid fish. Rev Fish Biol Fish 21:423–440. doi:10.1007/s11160-010-9182-6

    Article  Google Scholar 

  • Hellberg H, Olsen AB, Jensen F (2003) Clinical signs and histopathology in farmed Atlantic salmon (Salmo salar) associated with large numbers of the jellyfish Muggiaea atlantica (Siphonophore). Book of Abstracts, 11th EAFP International Conference, St. Julians, , September 2003

  • Hosia A, Båmstedt U (2007) Seasonal changes in the gelatinous zooplankton community and hydromedusa abundances in Korsfjord and Fanafjord, western Norway. Mar Ecol Prog Ser 351:113–127

    Article  Google Scholar 

  • Hosia A, Båmstedt U (2008) Seasonal abundance and vertical distribution of siphonophores in western Norwegian fjords. J Plankton Res 30(8):951–962

    Article  Google Scholar 

  • Lilley MKS, Beggs SE, Doyle TK, Hobson VJ, Stromberg KHP, Hays GC (2011) Global patterns of epipelagic gelatinous zooplankton biomass. Mar Biol 158:2429–2436

    Article  Google Scholar 

  • Mapstone GM (2014) Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9(2):e87737. doi:10.1371/journal.pone.0087737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mianzan HW, Quiñones J, Palma S, Schiariti A, Acha EM, Robinson KL, Graham WM (2014) Chrysaora plocamia: a poorly understood jellyfish from South American waters. In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Dordrecht, pp 219–236

    Chapter  Google Scholar 

  • Mills C (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68

    Article  Google Scholar 

  • Mujica A, Medina M (1997) Larvas de crustáceos decápodos de los canales australes de Chile (41°30’S-46°40’S). Cienc Tecnol Mar 20:147–154

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2015) vegan: Community Ecology Package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan. Accessed 10 July 2015

  • Oliveira OMP, Araujo EM, Ayón P, Cedeño-Posso CM, Cepeda AA, Córdova P, Galea HR, Genzano GN, Haddad MA, Mianzan HW, Migotto AE, Miranda LS, Miranda TP, Morandini AC, Nagata RM, Nascimento KB, Nogueira M Jr, Palma S, Quiñones J, Rodriguez CS, Scarabino F, Schiariti A, Tronolone VB, Marques AC (2016) Census of Cnidaria (Medusozoa) and Ctenophora from South American marine waters. Zootaxa 4194(1):1–256

    Article  Google Scholar 

  • Pagès F, Orejas C (1999) Medusae, siphonophores and ctenophores of the Magellan region. Sci Mar 63(Suppl):51–57

    Article  Google Scholar 

  • Pagès F, González HE, González SR (1996) Diet of the gelatinous zooplankton in Hardangerfjord (Norway) and potential predatory impact by Aglantha digitale (Trachymedusae). Mar Ecol Prog Ser 139:69–77

    Article  Google Scholar 

  • Pagès F, González H, Ramón M, Sobarzo M, Gili J-M (2001) Gelatinous zooplankton assemblages associated with water masses in the Humboldt Current System, and potential predatory impact by Bassia bassensis (Siphonophora: Calycophorae). Mar Ecol Prog Ser 210:13–24

    Article  Google Scholar 

  • Palma S (1973) Contribución al estudio de los sifonóforos encontrados frente a la costa de Valparaíso. I. Taxonomía. Invest Mar Valparaíso 4:17–88

    Google Scholar 

  • Palma S (2008) Zooplankton distribution and abundance in the austral Chilean channels and fjords. In: Silva N, Palma S (eds) Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cap Horn. Comité Oceanográfico Nacional-Pontificia Universidad Católica de Valparaíso, Valparaíso, 161 pp

  • Palma S (2010) Cnidarios Planctónicos (Cnidaria). In: Palma S, Báez P, Pequeño G (eds) Bibliografía sobre Biodiversidad Acuática de Chile. Comité Oceanográfico Nacional, Valparaíso, pp 51–58

  • Palma S, Apablaza P (2004) Abundancia estacional y distribución vertical del zooplancton gelatinoso carnívoro en un área de surgencia en el norte del Sistema de la Corriente de Humboldt. Invest Mar Valparaíso 32(1):49–70

    Google Scholar 

  • Palma S, Aravena G (2001) Distribución de sifonóforos, quetognatos y eufáusidos en la región magallánica. Cienc Tecnol Mar 24:47–59

    Google Scholar 

  • Palma S, Rosales S (1995) Composición, abundancia y distribución estacional del macroplancton de la bahía de Valparaíso. Invest Mar Valparaíso 23:49–66

    Google Scholar 

  • Palma S, Rosales S (1997) Sifonóforos epipelágicos de los canales australes chilenos (41°30’- 46°40’S). Cienc Tecnol Mar 20:125–146

    Google Scholar 

  • Palma S, Silva N (2004) Distribution of siphonophores, chaetognaths and euphausiids and oceanographic conditions in the fjords and channels of southern Chile. Deep-Sea Res II 51(6–9):513–535

    Article  Google Scholar 

  • Palma S, Ulloa R, Linacre L (1999) Sifonóforos, quetognatos y eufáusidos de los canales australes entre el Golfo de Penas y Estrecho de Magallanes. Cienc Tecnol Mar 22:111–142

    Google Scholar 

  • Palma S, Apablaza P, Soto D (2007) Diversity and aggregation areas of planktonic cnidarians of the southern channels of Chile (Boca del Guafo to Pulluche Channel). Invest Mar Valparaíso 35(2):71–82

    Google Scholar 

  • Palma S, Silva N, Retamal MC, Castro LE (2011) Seasonal and vertical distributional patterns of siphonophores and medusae in the Chiloé Interior Sea, Chile. Cont Shelf Res 31(3–4):260–271

    Article  Google Scholar 

  • Palma S, Retamal MC, Silva N, Silva C (2014) Siphonophores spatial and vertical distribution and its relation with oceanographic conditions in Patagonian fjords, southern Chile. Sci Mar 78(3):339–351

    Article  Google Scholar 

  • Palma S, Retamal MC, Silva N, Canepa A (2016) Siphonophores in fjords and channels in southern Patagonia: biodiversity, spatial distribution and environmental association. J Mar Biol Assoc U K. doi:10.1017/50025315416001302

    Article  Google Scholar 

  • Pavez MA, Landaeta ME, Castro LR, Schneider W (2010) Distribution of carnivorous gelatinous zooplankton in the upwelling zone of central Chile (austral spring 2001). J Plankton Res 32(7):1051–1065

    Article  CAS  Google Scholar 

  • Pugh PR (1984) The diel migrations and distribution within a mesopelagic community in the North East Atlantic. 7 Siphonophores. Prog Oceanogr 13:461–48

    Article  Google Scholar 

  • Pugh P (1999) Siphonophorae. In: Boltovskoy D. (ed) South Atlantic zooplankton, vol 1. Backhuys, Leiden, pp 467–511

  • Purcell JE (1981) Dietary composition and diel feeding patterns of epipelagic siphonophores. Mar Biol 65:83–90

    Article  Google Scholar 

  • Purcell JE (1982) Feeding and growth of the siphonophore Muggiaea atlantica (Cunningham 1893). J Exp Mar Biol Ecol 62:39–54

    Article  Google Scholar 

  • Purcell JE (1985) Predation on fish eggs and larvae by pelagic cnidarians and ctenophores. Bull Mar Sci 37:739–755

    Google Scholar 

  • Purcell JE (1991) A review of cnidarians and ctenophores feeding on competitors in the plankton. Hydrobiologia 216(217):335–342

    Article  Google Scholar 

  • Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44

    Article  Google Scholar 

  • Purcell JE, Uye S-I, Lo WT (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174

    Article  Google Scholar 

  • Purcell JE, Baxter EJ, Fuentes VL (2013) Jellyfish as products and problems of aquaculture. In: Geoff A, Gavin B (eds). Advances in aquaculture hatchery technology. Woodhead Publishing, Sawston, pp 404-430

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

  • Sievers HA, Silva N. (2008) Water masses and circulation in austral Chilean channels and fjords. In: Silva N, Palma S (eds) Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cap Horn. Comité Oceanográfico Nacional-Pontificia Universidad Católica de Valparaíso, Valparaíso, pp 53–58

  • Silva N (2008) Dissolved oxygen, pH and nutrients in the austral Chilean channels and fjord. In: Silva N, Palma S (eds) Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cap Horn. Comité Oceanográfico Nacional-Pontificia Universidad Católica de Valparaíso, Valparaíso, pp 37–43

  • Silva N, Calvete C, Sievers H (1997) Características oceanográficas físicas y químicas de canales australes chilenos entre Puerto Montt y Laguna San Rafael (Crucero Cimar-Fiordo 1). Cienc Tecnol Mar 20:23–106

    Google Scholar 

  • Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • Tomlinson B, Maynou F, Sabatés A, Fuentes V, Canepa A, Sastre S (2015) Systems approach modelling of the interactive effects of fisheries, jellyfish and tourism in the Catalan coast. Estuar Coast Shelf Sci. doi:10.1016/j.ecss.2015.11.012

    Article  Google Scholar 

  • Totton A (1965) A synopsis of the Siphonophora. British Museum (Natural History), London, 230 pp

  • Ulloa R, Palma S, Linacre L, Silva N (2000). Seasonal changes in the bathymetric distribution of siphonophores, chaetognaths and euphausiids associated to water masses off Valparaiso, Chile (Southeast Pacific). In: Farber J (ed) Oceanography of the Eastern Pacific I, Centro de Investigacion Cientifica y de Education Superior de Ensenada (CICESE), Ensenada, pp 72–83.

  • Villenas F, Soto D, Palma S (2009) Cambios interanuales en la biomasa y biodiversidad de zooplancton gelatinoso en el sur de Chile (Primaveras 2004 y 2005). Rev Biol Mar Oceanogr 44(2):309–324

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Baton Rouge, 384 pp

    Book  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Oceanography Committee (CONA) for the partial financing of the projects CONA-C17F 11–06 by S. Palma, and CONA- C17F 11–08 by N. Silva, as well as the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) for support of A. Canepa through project CONICYT-PAI: 82140034. We also gratefully acknowledge the crew of the R/V Abate Molina from the Instituto de Fomento Pesquero, Dr. Leonardo Castro for help with zooplankton samples, and María Inés Muñoz, head of sample collection, both of the University of Concepcion, and also Paola Reinoso and Gresel Arancibia for the sampling work and chemical analysis of the samples. Finally, we thank to Elena Guerrero and two other anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Canepa.

Additional information

Communicated by S. Piraino

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, S., Cabello, F., Silva, N. et al. Siphonophores of the Chiloé Inland Sea: biodiversity, spatial distribution and environmental association. Mar Biodiv 48, 1731–1742 (2018). https://doi.org/10.1007/s12526-017-0662-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-017-0662-y

Keywords

Navigation