Skip to main content

Advertisement

Log in

Global patterns of epipelagic gelatinous zooplankton biomass

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

There is concern that overfishing may lead to a proliferation of jellyfish through a process known as fishing down the food web. However, there has been no global synthesis of patterns of gelatinous zooplankton biomass (GZB), an important first step in determining any future trends. A meta-analysis of epipelagic-GZB patterns was undertaken, encompassing 58 locations on a global scale, and spanning the years 1967–2009. Epipelagic-GZB decreased strongly with increasing total water column depth (r2 = 0.543, p < 0.001, n = 58): in shallow (<50 m) coastal waters, epipelagic-GZB was typically 742× the levels in deep ocean (>2,000 m) sites. However, the ratio of GZB to primary productivity showed high values across a range of depths, i.e. this measure of the relative abundance of gelatinous zooplankton did not co-vary with depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angel MV, Pugh PR (2000) Quantification of diel vertical migration by micronektonic taxa in the northeast Atlantic. Hydrobiologia 440:161–179

    Article  Google Scholar 

  • Barz K, Hirche HJ (2007) Abundance, distribution and prey composition of scyphomedusae in the southern North Sea. Mar Biol 151(3):1021–1033

    Article  Google Scholar 

  • Boero F, Bouillon J, Gravili C, Miglietta MP, Parsons T, Piraino S (2008) Gelatinous plankton: irregularities rule the world (sometimes). Mar Ecol Prog Ser 356:299–310

    Article  Google Scholar 

  • Brodeur RD, Mills CE, Overland JE, Walters GE, Schumacher JD (1999) Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fish Oceanogr 8(4):296–306

    Article  Google Scholar 

  • Brodeur RD, Decker MB, Ciannelli L, Purcell JE, Bond NA, Stabeno PJ, Acuna E, Hunt GL (2008) Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Prog Oceangr 77:103–111

    Article  Google Scholar 

  • Cargo DG, King DR (1990) Forecasting the abundance of the sea nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13(4):486–491

    Article  Google Scholar 

  • Daskalov GM, Grishin AN, Rodionov S, Mihneva V (2007) Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proc Natl Acad Sci USA 104(25):10518–10523

    Article  CAS  Google Scholar 

  • Dawson MN, Gupta AS, England MH (2005) Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proc Natl Acad Sci USA 102(34):11968–11973

    Article  CAS  Google Scholar 

  • Essington TE, Beaudreau AH, Wiedenmann J (2006) Fishing through marine food webs. Proc Natl Acad Sci USA 103(9):3171–3175

    Article  CAS  Google Scholar 

  • Graham WM, Martin DL, Felder DL, Asper VL, Perry HM (2003) Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biol Invasions 5(1):53–69

    Article  Google Scholar 

  • Haddock SHD (2004) A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530(1):549–556

    Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE (2008) A global map of human impact on marine ecosystems. Science 319(5865):948–952

    Article  CAS  Google Scholar 

  • Hamner WM, Dawson MN (2009) A review and synthesis on the systematics and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616(1):161–191

    Article  Google Scholar 

  • Han CH, Uye SI (2009) Quantification of the abundance and distribution of the common jellyfish Aurelia aurita s.l. with a Dual-frequency IDentification SONar (DIDSON). J Plankton Res 31(8):805–814

    Article  Google Scholar 

  • Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (2000) ICES zooplankton methodology manual. Academic Press, San Diego

    Google Scholar 

  • Hay S (2006) Marine ecology: gelatinous bells may ring change in marine ecosystems. Curr Biol 16(17):R679–R682

    Article  CAS  Google Scholar 

  • Hay SJ, Hislop JRG, Shanks AM (1990) North Sea Scyphomedusae—summer distribution, estimated biomass and significance particularly for O-group Gadoid fish. Neth J Sea Res 25(1–2):113–130

    Article  Google Scholar 

  • Houghton JDR, Doyle TK, Wilson MW, Davenport J, Hays GC (2006) Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87(8):1967–1972

    Article  Google Scholar 

  • Irigoien X, Harris RP, Head RN, Harbour D (2000) North Atlantic Oscillation and spring bloom phytoplankton composition in the English Channel. J Plankton Res 22(12):2367–2371

    Article  Google Scholar 

  • Ivanov VP, Kamakin AM, Ushivtzev VB, Shiganova T, Zhukova O, Aladin N, Wilson SI, Harbison GR, Dumont HJ (2000) Invasion of the Caspian Sea by the comb jellyfish Mnemiopsis leidyi (Ctenophora). Biol Invasions 2(3):255–258

    Article  Google Scholar 

  • Kideys AE (2002) Fall and rise of the black sea ecosystem. Science 297(5586):1482–1484

    Article  CAS  Google Scholar 

  • Kideys A, Moghim M (2003) Distribution of the alien ctenophore Mnemiopsis leidyi in the Caspian Sea in August 2001. Mar Biol 142(1):163–171

    Article  Google Scholar 

  • Kogovšek T, Bogunović B, Malej A (2010) Recurrence of bloom-forming scyphomedusae: wavelet analysis of a 200-year time series. Hydrobiologia 645(1):81–96

    Article  Google Scholar 

  • Lalli CM, Parsons TR (1993) Biological oceanography: an introduction. Pergamon Press, Oxford

    Google Scholar 

  • Lucas CH (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451(1–3):229–246

    Article  Google Scholar 

  • Lynam CP, Hay SJ, Brierley AS (2004) Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation. Limnol Oceanogr 49(3):637–643

    Article  Google Scholar 

  • Lynam CP, Gibbons MJ, Axelsen BE, Sparks CAJ, Coetzee J, Heywood BG, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16(13):492–493

    Article  Google Scholar 

  • Lynam CP, Attrill MJ, Skogen MD (2010) Climatic and oceanic influences on the abundance of gelatinous zooplankton in the North Sea. J Mar Biol Assoc UK 90:1153–1159

    Article  Google Scholar 

  • Lynam CP, Lilley MKS, Bastian T, Doyle TK, Beggs SE, Hays GC (2011) Have jellyfish in the Irish Sea benefited from climate change and overfishing? Glob Change Biol 17(2):767–782

    Article  Google Scholar 

  • Mills CE (1995) Medusae, Siphonophores, and Ctenophores as planktivorous predators in changing global ecosystems. ICES J Mar Sci 52(3–4):575–581

    Article  Google Scholar 

  • Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451(1–3):55–68

    Article  Google Scholar 

  • Molinero JC, Casini M, Buecher E (2008) The influence of the Atlantic and regional climate variability on the long-term changes in gelatinous carnivore populations in the northwestern Mediterranean. Limnol Oceanogr 53(4):1456–1467

    Article  Google Scholar 

  • Moller H (1980) Scyphomedusae as predators and food competitors of larval fish. Meeresforschung 28(2–3):90–100

    Google Scholar 

  • Pages F, White MG, Rodhouse PG (1996) Abundance of gelatinous carnivores in the nekton community of the Antarctic Polar Frontal Zone in summer 1994. Mar Ecol Prog Ser 141(1):139–147

    Article  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F Jr (1998) Fishing down marine food webs. Science 279(5352):860–863

    Article  CAS  Google Scholar 

  • Pauly D, Graham W, Libralato S, Morissette L, Deng Palomares ML (2009) Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia 616(1):67–85

    Article  Google Scholar 

  • Perez-Ruzafa A, Gilabert J, Gutierrez JM, Fernandez AI, Marcos C, Sabah S (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475(1):359–369

    Article  Google Scholar 

  • Pitt KA, Kingsford MJ (2003) Temporal variation in the virgin biomass of the edible jellyfish, Catostylus mosaicus (Scyphozoa, Rhizostomeae). Fish Res 63(3):303–313

    Article  Google Scholar 

  • Pitt KA, Purcell JE (2009) Jellyfish blooms: causes, consequences and recent advances. Springer, Berlin

    Book  Google Scholar 

  • Pugh PR (1990) Biological collections made during Discovery CR 175 to BIOTRANS Site (c.47N, 20W). Institute of Oceanographic Sciences Report No. 277

  • Pugh PR, Pages F, Boorman B (1997) Vertical distribution and abundance of pelagic cnidarians in the eastern Weddell Sea, Antarctica. J Mar Biol Assoc UK 77(2):341–360

    Article  Google Scholar 

  • Purcell JE (2009) Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hydrobiologia 616(1):23–50

    Article  Google Scholar 

  • Purcell JE, Decker MB (2005) Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987–2000. Limnol Oceanogr 50(1):376–387

    Article  Google Scholar 

  • Purcell JE, Malej A, Benovic A (1999) Potential links of jellyfish to eutrophication and fisheries. In: Malone TC (ed) Ecosystems at the land-sea margin: drainage basin to coastal sea. Coastal and Estuarine Studies. American Geophysical Union, Washington, pp 241–263

    Chapter  Google Scholar 

  • Purcell JE, Shiganova TA, Decker MB, Houde ED (2001) The ctenophore Mnemiopsis in native and exotic habitats: US estuaries versus the Black Sea basin. Hydrobiologia 451(1–3):145–176

    Article  Google Scholar 

  • Purcell JE, Uye S, Lo W (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174

    Article  Google Scholar 

  • Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24(6):312–322

    Article  Google Scholar 

  • San Martin E, Harris RP, Irigoien X (2006) Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep Sea Res Part II Topic Stud Oceanogr 53(14–16):1560–1572

    Article  Google Scholar 

  • Schneider G, Behrends G (1994) Population dynamics and the trophic role of Aurelia aurita medusae in the Kiel Bight and Western Baltic. ICES J Mar Sci 51(4):359–367

    Article  Google Scholar 

  • Shiganova T, Mirzoyan Z, Studenikina E, Volovik S, Siokou-Frangou I, Zervoudaki S, Christou E, Skirta A, Dumont H (2001) Population development of the invader ctenophore Mnemiopsis leidyi, in the Black Sea and in other seas of the Mediterranean basin. Mar Biol 139(3):431–445

    Article  Google Scholar 

  • Smyth TJ, Tilstone GH, Groom SB (2005) Integration of radiative transfer into satellite models of ocean primary production. J Geophys Res 110(C10):C10014

    Article  Google Scholar 

  • Strömberg KHP, Smyth TJ, Allen JI, Pitois S, O’Brien TD (2009) Estimation of global zooplankton biomass from satellite ocean colour. J Mar Sys 78(1):18–27

    Article  Google Scholar 

  • Tsolaki E, Diamadopoulos E (2010) Technologies for ballast water treatment: a review. J Chem Technol Biotechnol 85(1):19–32

    Article  CAS  Google Scholar 

  • Uye S, Shimauchi H (2005) Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan. J Plankton Res 27(3):237–248

    Article  CAS  Google Scholar 

  • Zavodnik D (1991) Occurrences of Pelagia noctiluca (Scyphozoa) in North Adriatic coastal areas. In: UNEP (ed) Jellyfish blooms in the Mediterranean: Proceedings of the II workshop on jellyfish in the mediterranean sea, vol MAP technical reports No. 47. UNEP, Trieste 2–5 September 1987, pp 202–211

Download references

Acknowledgments

This work is part of EcoJel a project funded by the Interreg 4a Ireland–Wales programme, which forms part of the European Regional Development Fund (ERDF); Natural Environment Research Council (NERC); and the Esmée Fairbairn Foundation. Author contributions: GCH designed the study. MKSL compiled and analysed the global gelatinous zooplankton data set. GCH and MKSL wrote the paper with contributions from all authors. We wish to thank F. Lombard for advice on the weighted regression. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Hays.

Additional information

Communicated by U. Sommer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lilley, M.K.S., Beggs, S.E., Doyle, T.K. et al. Global patterns of epipelagic gelatinous zooplankton biomass. Mar Biol 158, 2429–2436 (2011). https://doi.org/10.1007/s00227-011-1744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1744-1

Keywords

Navigation