Skip to main content

Advertisement

Log in

Geotechnical Characterization and PS-InSAR for Risk Analysis of Solang Landslide in Beas Valley, NW Himalaya: A Wake-Up Call!

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Landslide is one of the most common occurring natural disasters in the Himalayan terrain due to its rugged topography, steep slopes, and structural instability. The repercussions of landslides in Himalaya are often devastating, leading to loss of life, property, and infrastructure. Therefore, it is important to monitor landslides and reduce its consequences for which the state-of-the-art Persistent scatterers-Interferometric Synthetic Aperture Radar (PS-InSAR) technique is readily used nowadays. The present study illustrates a combined approach using PS-InSAR and a semi-quantitative empirical model for landslide risk micro-zonation utilizing the case study of Solang village (Himachal Pradesh, India). The analysis exhibits that a large part of the village is undergoing deformation with a subsidence rate of upto 80 mm/year near the crown portion of the landslide. The risk analysis indicates that ~ 50% of the buildings housing more than 100 people are under high to very high risk. To better understand the landslide phenomenon in the area, the study also investigates the detailed geomorphological and geological characterization of the area, geotechnical characters of the soil and rainfall pattern in the area. The present study highlights the scope of advanced geoinformatics techniques like InSAR in site-specific risk analysis of landslides and the need for mitigation in the Solang landslide zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aslan, G., Foumelis, M., Raucoules, D., De Michele, M., Bernardie, S., & Cakir, Z. (2020). Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French Alps. Remote Sensing, 12(8), 1305. https://doi.org/10.3390/rs12081305

    Article  Google Scholar 

  • Bhambri, R., Mehta, M., Dobhal, D. P., Gupta, A. K., Pratap, B., Kesarwani, K., & Verma, A. (2016). Devastation in the Kedarnath (Mandakini) Valley, Garhwal Himalaya, during 16–17 June 2013: A remote sensing and ground-based assessment. Natural Hazards, 80, 1801–1822. https://doi.org/10.1007/s11069-015-2033-y

    Article  Google Scholar 

  • Bhattacharya, A., & Mukherjee, K. (2017). Review on InSAR based displacement monitoring of Indian Himalayas: Issues, challenges and possible advanced alternatives. Geocarto International, 32(3), 298–321.

    Article  Google Scholar 

  • Bianchini, S., Ciampalini, A., Raspini, F., Bardi, F., Di Traglia, F., Moretti, S., & Casagli, N. (2015). Multi-temporal evaluation of landslide movements and impacts on buildings in San Fratello (Italy) by means of C-band and X-band PSI data. Pure and Applied Geophysics, 172, 3043–3065.

    Article  Google Scholar 

  • Chand, K. (2019). Chapter-7 use of traditional knowledge system (TKS) for disaster risk reduction in Kullu Valley, North-Western Indian Himalaya. Chief Editor 51, p. 109.

  • Chen, H., Qin, S., Xue, L., & Xu, C. (2021). Why the Xintan landslide was not triggered by the heaviest historical rainfall: Mechanism and review. Engineering Geology, 294, 106379. https://doi.org/10.1016/j.enggeo.2021.106379

    Article  Google Scholar 

  • Colesanti, C., Ferretti, A., Prati, C., & Rocca, F. (2003). Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, 68(1–2), 3–14. https://doi.org/10.1016/S0013-7952(02)00195-3

    Article  Google Scholar 

  • Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., & Pitilakis, K. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263. https://doi.org/10.1007/s10064-013-0538-8

    Article  Google Scholar 

  • Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X

    Article  Google Scholar 

  • DDMA, (2017). Kullu district disaster management plan. Available via https://cdn.s3waas.gov.in/s368d30a9594728bc39aa24be94b319d21/uploads/2018/07/2018070989.pdf.

  • Dortch, J. M., Owen, L. A., Haneberg, W. C., Caffee, M. W., Dietsch, C., & Kamp, U. (2009). Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews, 28(11–12), 1037–1054. https://doi.org/10.1016/j.quascirev.2008.05.002

    Article  Google Scholar 

  • Du, J. (2012). Risk assessment of individual landslide. PhD thesis. Wuhan: China University of Geosciences (in Chinese).

  • Fernández-Torres, E. A., Cabral-Cano, E., Novelo-Casanova, D. A., Solano-Rojas, D., Havazli, E., & Salazar-Tlaczani, L. (2022). Risk assessment of land subsidence and associated faulting in Mexico City using InSAR. Natural Hazards, 112(1), 37–55. https://doi.org/10.1007/s11069-021-05171-0

    Article  Google Scholar 

  • Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing., 39(1), 8–20.

    Article  Google Scholar 

  • Frattini, P., Crosta, G. B., Rossini, M., & Allievi, J. (2018). Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides, 15, 1053–1070.

    Article  Google Scholar 

  • Gardner, J. S. (2002). Natural hazards risk in the Kullu district, Himachal Pradesh, India. Geographical Review, 92(2), 282–306. https://doi.org/10.1111/j.1931-0846.2002.tb00008.x

    Article  Google Scholar 

  • Gilchrist, A. R., Summerfield, M. A., & Cockburn, H. A. (1994). Landscape dissection, isostatic uplift, and the morphologic development of orogens. Geology, 22(11), 963–966. https://doi.org/10.1130/0091-7613(1994)022%3C0963:LDIUAT%3E2.3.CO;2

    Article  Google Scholar 

  • Glade, T., Anderson, M. G., & Crozier, M. J. (2005). Landslide hazard and risk (p. 802). Wiley.

    Book  Google Scholar 

  • Gupta, V., & Sah, M. P. (2008). Spatial variability of mass movements in the Satluj Valley, Himachal Pradesh during 1990∼2006. Journal of Mountain Science, 5(1), 38–51. https://doi.org/10.1007/s11629-008-0038-7

    Article  Google Scholar 

  • Hilley, G. E., Burgmann, R., Ferretti, A., Novali, F., & Rocca, F. (2004). Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 304(5679), 1952–1955. https://doi.org/10.1126/science.1098821

    Article  CAS  Google Scholar 

  • Ho, K. K., & Ko, F. W. (2009). Application of quantified risk analysis in landslide risk management practice: Hong Kong experience. Georisk., 3(3), 134–146.

    Google Scholar 

  • HPSDM, (2012). Himachal pradesh state disaster management plan. Available via NIDM Website http://hpsdma.nic.in/DisasterManagement/HPSDMPfinalindex.pdf.

  • https://mausam.imd.gov.in/shimla/.

  • IS-2720 Part 4 (1985a). Indian Standard Method of test for soils, grain size analysis – Mechanical method. Bureau of Indian Standards, New Delhi, India.

  • IS-2720 Part 5 (1985b). Indian Standard Methods of test for soils, determination of liquid and plastic limit of soils. Bureau of Indian Standards, New Delhi, India.

  • IS-2720 Part 10, (1991). Indian standard method of test for soils: Unconfined compressive strength. Bureau of Indian Standards, New Delhi, India.

  • IS-2720 Part 13 (1986). Indian Standard Method of test for soils, direct shear test. Bureau of Indian Standards, New Delhi, India.

  • Jaboyedoff, M., Carrea, D., Derron, M. H., Oppikofer, T., Penna, I. M., & Rudaz, B. (2020). A review of methods used to estimate initial landslide failure surface depths and volumes. Engineering Geologists, 267, 105478.

    Article  Google Scholar 

  • Joshi, M., Kothyari, G. C., & Kotlia, B. S. (2023). Landslide detection in Kinnaur Valley, NW India using PS-InSAR technique. Physical Geography, 20, 1–5.

    Google Scholar 

  • Kampes, B. (2005). Displacement parameter estimation using permanent scatterer interferometry (PhD thesis). Technische Universiteit Delft.

  • Khare, G., Kumar, V., Sardana, S., & Vishwakarma, G. K. (2022). Geoenvironmental and geotechnical assessment of soil slopes in the vicinity of Atal tunnel in Himachal Pradesh, India. Geomatics, Natural Hazards and Risk, 13(1), 1251–1269. https://doi.org/10.1080/19475705.2022.2068456

    Article  Google Scholar 

  • Korup, O., Clague, J. J., Hermanns, R. L., Hewitt, K., Strom, A. L., & Weidinger, J. T. (2007). Giant landslides, topography, and erosion. Earth and Planetary Science Letters, 261(3–4), 578–589. https://doi.org/10.1016/j.epsl.2007.07.025

    Article  CAS  Google Scholar 

  • Kumar, A., Asthana, A. K., Priyanka, R. S., Jayangondaperumal, R., Gupta, A. K., & Bhakuni, S. S. (2017). Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Geomorphology, 284, 72–87. https://doi.org/10.1016/j.geomorph.2017.01.003

    Article  Google Scholar 

  • Kuri, M., Arora, M.K., Sharma, M.L. (2018). Slope stability analysis in nainital town using PS and QPS InSAR technique. In IGARSS 2018–2018 IEEE international geoscience and remote sensing symposium, pp 4443–4446. IEEE.

  • Lamichhane, S., Aryal, K. R., Talchabhadel, R., Thapa, B. R., Adhikari, R., Khanal, A., Pandey, V. P., & Gautam, D. (2021). Assessing the prospects of transboundary multihazard dynamics: The case of Bhotekoshi-Sunkoshi watershed in Sino-Nepal border region. Sustainability, 13(7), 3670. https://doi.org/10.3390/su13073670

    Article  Google Scholar 

  • Li, Y., Chen, J., Zhang, Y., et al. (2020). Debris flow susceptibility assessment and runout prediction: A case study in Shiyang Gully, Beijing, China. Int J Environ Res, 14, 365–383. https://doi.org/10.1007/s41742-020-00263-4

    Article  CAS  Google Scholar 

  • Li, Z., Nadim, F., Huang, H., Uzielli, M., & Lacasse, S. (2010). Quantitative vulnerability estimation for scenario-based landslide hazards. Landslides, 7(2), 125–134. https://doi.org/10.1007/s10346-009-0190-3

    Article  Google Scholar 

  • Luirei, K., et al. (2023). Active tectonics in the Main Boundary Thrust zone, Garhwal Himalaya, as evident from palaeoseismic signatures, morphotectonic features and PSI base ground deformation. Geological Journal, 58(1), 195–208.

    Article  Google Scholar 

  • Mahajan, A. K., Sharma, S., Patial, S., Sharma, H., Pandey, D. D., & Negi, S. (2022). A brief address of the causal factors, mechanisms, and the effects of a major landslide in Kangra valley, North-Western Himalaya, India. Arabian Journal of Geosciences, 15(9), 1–12. https://doi.org/10.1007/s12517-022-10163-w

    Article  Google Scholar 

  • Maharaj, R. J. (1993). Landslide processes and landslide susceptibility analysis from an upland watershed: A case study from St. Andrew, Jamaica, West Indies. Engineering Geology, 34(1–2), 53–79. https://doi.org/10.1016/0013-7952(93)90043-C

    Article  Google Scholar 

  • Martha, T. R., Govindharaj, K. B., & Kumar, K. V. (2015). Damage and geological assessment of the 18 September 2011 Mw 6.9 earthquake in Sikkim, India using very high resolution satellite data. Geoscience Frontiers, 6(6), 793–805. https://doi.org/10.1016/j.gsf.2013.12.011

    Article  Google Scholar 

  • Meng, Q., Xu, Q., Wang, B., Li, W., Peng, Y., Peng, D., Qi, X., & Zhou, D. (2019). Monitoring the regional deformation of loess landslides on the Heifangtai terrace using the Sentinel-1 time series interferometry technique. Natural Hazards, 98(2), 485–505. https://doi.org/10.1007/s11069-019-03703-3

    Article  Google Scholar 

  • Misra, D. K., & Tewari, V. C. (1988). Tectonics and sedimentation of the rocks between Mandi and Rohtang, Beas valley, Himachal Pradesh, India. Geoscience Journal, 9(2), 153–172.

    Google Scholar 

  • Moreiras, S., Lisboa, M. S., & Mastrantonio, L. (2012). The role of snow melting upon landslides in the central Argentinean Andes. Earth Surface Processes and Landforms, 37(10), 1106–1119. https://doi.org/10.1002/esp.3239

    Article  Google Scholar 

  • Naithani, A. K. (1999). The Himalayan Landslides. Employ News, 23(47), 20–26.

    Google Scholar 

  • Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927–930. https://doi.org/10.1130/G33217.1

    Article  Google Scholar 

  • Pourkhosravani, M., Mehrabi, A., Pirasteh, S., & Derakhshani, R. (2022). Monitoring of Maskun landslide and determining its quantitative relationship to different climatic conditions using D-InSAR and PSI techniques. Geomatics, Natural Hazards and Risk, 13(1), 1134–1153.

    Article  Google Scholar 

  • Prasad, A. S., Pandey, B. W., Leimgruber, W., & Kunwar, R. M. (2016). Mountain hazard susceptibility and livelihood security in the upper catchment area of the river Beas, Kullu Valley, Himachal Pradesh, India. Geoenviron Disasters, 3(1), 1–17. https://doi.org/10.1186/s40677-016-0037-x

    Article  Google Scholar 

  • Ram, P., & Gupta, V. (2022). Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser Himalaya, India. Environment, Development and Sustainability, 24(1), 473–501. https://doi.org/10.1007/s10668-021-01449-2

    Article  Google Scholar 

  • Roccheggiani, M., Piacentini, D., Tirincanti, E., Perissin, D., & Menichetti, M. (2019). Detection and monitoring of tunneling induced ground movements using Sentinel-1 SAR Interferometry. Remote Sensing, 11(6), 639.

    Article  Google Scholar 

  • Roy, P., Jain, N., Martha, T. R., & Kumar, K. V. (2022a). Reactivating Balia Nala landslide, Nainital, India—A disaster in waiting. Landslides, 19, 1531–1535.

    Article  Google Scholar 

  • Roy, P., Martha, T. R., Khanna, K., Jain, N., & Kumar, K. V. (2022b). Time and path prediction of landslides using InSAR and flow model. Remote Sensing of Environment, 271, 112899.

    Article  Google Scholar 

  • Sardana, S., Sinha, R. K., Verma, A. K., & Singh, T. N. (2022). Investigations into the freeze–thaw-induced alteration in microstructure and deteriorative responses of physico-mechanical properties of Himalayan rock. Bulletin of Engineering Geology and the Environment, 81(7), 1–16. https://doi.org/10.1007/s10064-022-02762-4

    Article  Google Scholar 

  • Scaioni, M., Longoni, L., Melillo, V., & Papini, M. (2014). Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sensing, 6(10), 9600–9652. https://doi.org/10.3390/rs6109600

    Article  Google Scholar 

  • Senthilkumar, V., Chandrasekaran, S. S., & Maji, V. B. (2017). Geotechnical characterization and analysis of rainfall—Induced 2009 landslide at Marappalam area of Nilgiris district, Tamil Nadu state, India. Landslides, 14(5), 1803–1814. https://doi.org/10.1007/s10346-017-0839-2

    Article  Google Scholar 

  • Shankar, H., Singh, D., & Chauhan, P. (2022). Landslide deformation and temporal prediction of slope failure in Himalayan terrain using PSInSAR and Sentinel-1 data. Advances in Space Research, 70(12), 3917–3931.

    Article  Google Scholar 

  • Singh, S., Raju, A., & Banerjee, S. (2022). Detecting slow-moving landslides in parts of Darjeeling-Sikkim Himalaya, NE India: Quantitative constraints from PSInSAR and its relation to the structural discontinuities. Landslides, 19(10), 2347–2365.

    Article  Google Scholar 

  • Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3–4), 112–131. https://doi.org/10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  • Van Westen, C. J., Van Asch, T. W., & Soeters, R. (2006). Landslide hazard and risk zonation—Why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65, 167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Verdhen, A., Chahar, B. R., & Sharma, O. P. (2016). Winter Precipitation and Snowpack-melt with Temperature and Elevation at Solang Valley, India. Hydrology:current Research, 7(245), 2.

    Google Scholar 

  • Xiao, L., Wang, J., Zhu, Y., & Zhang, J. (2020). Quantitative risk analysis of a rainfall-induced complex landslide in wanzhou county, three gorges reservoir, China. International Journal of Disaster Risk Science, 11(3), 347–363. https://doi.org/10.1007/s13753-020-00257-y

    Article  Google Scholar 

  • Yue, X., Wu, S., Yin, Y., Gao, J., & Zheng, J. (2018). Risk identification of seismic landslides by joint Newmark and RockFall analyst models: A case study of roads affected by the Jiuzhaigou earthquake. International Journal of Disaster Risk Science, 9(3), 392–406. https://doi.org/10.1007/s13753-018-0182-9

    Article  Google Scholar 

  • Zeitler, P. K., Meltzer, A. S., Koons, P. O., Craw, D., Hallet, B., Chamberlain, C. P., Kidd, W. S., Park, S. K., Seeber, L., Bishop, M., & Shroder, J. (2001). Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today, 11(1), 4–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their thanks to the Director, Wadia Institute of Himalayan Geology for his constant encouragement and CSIR for financial assistance to carry out the work. Dr. Bikash Ram and Ambar Solanki are also thanked for their precious assistance in writing the article.

Funding

The authors did not received any Funds for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

R. Kaur and V. Gupta contributed to the study conception and design. Material preparation, data collection and analysis were performed by R. Kaur and K. Malik. The first draft of the manuscript was edited by R. Kaur, V. Gupta and B.S. Chaudhary. The revised manuscript was edited and improved by R. Kaur and K. Malik. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vikram Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 719 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Gupta, V., Malik, K. et al. Geotechnical Characterization and PS-InSAR for Risk Analysis of Solang Landslide in Beas Valley, NW Himalaya: A Wake-Up Call!. J Indian Soc Remote Sens (2024). https://doi.org/10.1007/s12524-024-01856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12524-024-01856-8

Keywords

Navigation