Skip to main content
Log in

Forest Aboveground Biomass Prediction by Integrating Terrestrial Laser Scanning Data, Landsat 8 OLI-Derived Forest Canopy Density and Spectral Indices

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Forest canopy density (FCD) is one of the important parameters for forest mapping and monitoring. Terrestrial Laser Scanning (TLS) is one of the most accurate tools used in field data collection. Hence, the present study aimed to predict forest aboveground biomass (AGB) by integrating TLS data, satellite data-derived FCD and spectral indices. FCD Mapper was used to classify Landsat-8 OLI data into FCD classes, which were validated using field-measured FCD. In the field, point cloud data were collected from each FCD class using TLS. The diameter at breast height (dbh) and height of individual trees were retrieved from the point cloud data and validated with field-measured dbh and height. AGB was estimated from the TLS-derived dbh and height and modelled as a function of Landsat-8 OLI-derived FCD classes and spectral indices. A total of 11 FCD classes were generated, which showed a strong positive correlation (r = 0.96) with the field-measured FCD. From the TLS point cloud data, 96% of individual trees were extracted. Positive correlations were found between TLS-measured dbh and field-measured dbh (r = 0.99), and TLS-measured height and field-measured height (r = 0.96). A linear function best fitted between TLS-estimated AGB and FCD classes was established. Because of the low variability in AGB due to absolute FCD classes, the model was further extended using a few spectral indices. Using a multiple linear model, the average AGB (374 Mg ha−1) and total AGB (3,024,550 Mg) of the study area were predicted. The study highlighted that the combined application of TLS and satellite data-derived FCD and spectral indices can be one of the fastest and accurate methods in forest AGB prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdollahnejad, A., Panagiotidis, D., & Surový, P. (2017). Forest canopy density assessment using different approaches—Review. Journal of Forest Science, 63(3), 107–116. https://doi.org/10.17221/110/2016-JFS

    Article  Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Bhandari, S. K., & Chhetri, B. B. K. (2020). Individual-based modelling for predicting height and biomass of juveniles of Shorea robusta. Austrian Journal of Forest Science, 137(2), 133–160.

    Google Scholar 

  • Bhandari, S. K., & Neupane, H. (2014). Allometric equations for estimating the above-ground biomass of Castanopsis indica at juvenile stage. Banko Janakari, 24(1), 14–22.

    Article  Google Scholar 

  • Bienert, A., Scheller, S., Keane, E., Mohan, F., & Nugent, C. (2007). Tree detection and diameter estimations by analysis of forest terrestrial laserscanner point clouds. In ISPRS workshop on laser scanning (Vol. 36, pp. 50–55). IAPRS.

  • Burkhart, H. E., Parker, R. C., Strub, M. R., & Oderwald, R. G. (1992). Yield of oldfield loblolly pine plantations. School of Forestry and Wildlife Resources, Virginia Polytechnic Institute and State University, Blacksburg. Publ. FWS-3-72.

  • Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., Culvenor, D., Avitabile, V., Disney, M., Armston, J., & Kaasalainen, M. (2015). Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods in Ecology and Evolution, 6(2), 198–208. https://doi.org/10.1111/2041-210X.12301

    Article  Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. The Manager of Publications, Delhi.

    Google Scholar 

  • Chandrashekhar, M. B., Saran, S., Raju, P. L. N., & Roy, P. S. (2005). Forest canopy density stratification: How relevant is biophysical spectral response modelling approach? Geocarto International, 20(1), 15–21. https://doi.org/10.1080/10106040508542332

    Article  Google Scholar 

  • Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629

    Article  Google Scholar 

  • Curtis, R. O., Clendenen, G. W., & De Mars, D. J. (1981). A new stand simulator for coast Douglas-fir: DFSIM user’s guide. USDA forest service. Pacific Northwest Forest Experiment Station, General Technic Report. PNW-135.

  • Dang, A. T. N., Nandy, S., Srinet, R., Luong, N. V., Ghosh, S., & Kumar, A. S. (2019). Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics, 50, 24–32. https://doi.org/10.1016/j.ecoinf.2018.12.010

    Article  Google Scholar 

  • Dassot, M., Constant, T., & Fournier, M. (2011). The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Annals of Forest Science, 68(5), 959–974. https://doi.org/10.1007/s13595-011-0102-2

    Article  Google Scholar 

  • Disney, M., Burt, A., Calders, K., Schaaf, C., & Stovall, A. (2019). Innovations in ground and airborne technologies as reference and for training and validation: Terrestrial laser scanning (TLS). Surveys in Geophysics, 40(4), 937–958. https://doi.org/10.1007/s10712-019-09527-x

    Article  Google Scholar 

  • FRI. (2002). Indian woods: Their identification, properties and uses (Vol. I–VI, Revised Ed.). Forest Research Institute, Indian Council of Forestry Research and Education, Ministry of Environment and Forests, Government of India.

  • FSI. (1996). Volume equations for forests of India, Nepal and Bhutan. Forest Survey of India, Ministry of Environment and Forests, Government of India, Dehradun.

    Google Scholar 

  • FSI. (2021). India State of Forest report 2021. Forest Survey of India, Ministry of Environment, Forest and Climate Change, Government of India, Dehradun.

    Google Scholar 

  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3

    Article  Google Scholar 

  • Goodenough, A. E., & Goodenough, A. S. (2012). Development of a rapid and precise method of digital image analysis to quantify canopy density and structural complexity. International Scholarly Research Notices, 2012, 1–11. https://doi.org/10.5402/2012/619842

    Article  Google Scholar 

  • Haldar, A.K. (2016). Terrestrial laser scanning based modelling for forest structural parameter retrieval. Master’s thesis, University of Twente.

  • Haripriya, G. S. (2000). Estimates of biomass in Indian forests. Biomass and Bioenergy, 19(4), 245–258. https://doi.org/10.1016/S0961-9534(00)00040-4

    Article  Google Scholar 

  • Hauglin, M., Astrup, R., Gobakken, T., & Næsset, E. (2013). Estimating single-tree branch biomass of Norway spruce with terrestrial laser scanning using voxel-based and crown dimension features. Scandinavian Journal of Forest Research, 28(5), 456–469. https://doi.org/10.1080/02827581.2013.777772

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • Hunt, E. R., Jr., & Rock, B. N. (1989). Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sensing of Environment, 30(1), 43–54. https://doi.org/10.1016/0034-4257(89)90046-1

    Article  Google Scholar 

  • Kalita, R. M., Nandy, S., Srinet, R., Nath, A. J., & Das, A. K. (2022). Mapping the spatial distribution of aboveground biomass of tea agroforestry systems using random forest algorithm in Barak valley, Northeast India. Agroforestry Systems, 96, 1175–1188. https://doi.org/10.1007/s10457-022-00776-1

    Article  Google Scholar 

  • Kalwar, O. P. P. (2015). Derivation of forest plot inventory parameters from terrestrial LiDAR data for carbon estimation. Master’s thesis, University of Twente.

  • Kankare, V., Holopainen, M., Vastaranta, M., Puttonen, E., Yu, X., Hyyppä, J., Vaaja, M., Hyyppä, H., & Alho, P. (2013). Individual tree biomass estimation using terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 75, 64–75. https://doi.org/10.1016/j.isprsjprs.2012.10.003

    Article  Google Scholar 

  • Keane, R. E., Reinhardt, E. D., Scott, J., Gray, K., & Reardon, J. (2005). Estimating forest canopy bulk density using six indirect methods. Canadian Journal of Forest Research, 35(3), 724–739. https://doi.org/10.1139/x04-213

    Article  Google Scholar 

  • Kebede, B., & Soromessa, T. (2018). Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu forest. Ecosystem Health and Sustainability, 4(1), 1–12. https://doi.org/10.1080/20964129.2018.1433951

    Article  Google Scholar 

  • Kelbe, D. (2015). Forest structure from terrestrial laser scanning–in support of remote sensing calibration/ validation and operational inventory. Ph.D. Thesis, Rochester Institute of Technology.

  • Korhonen, L., Korhonen, K. T., Rautiainen, M., & Stenberg, P. (2006). Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica, 40(4), 577–588. https://doi.org/10.14214/sf.315

    Article  Google Scholar 

  • Krůček, M., Trochta, J., & Kral, K. (2015). 3D forest user guide: Tool for processing of point clouds acquired by terrestrial laser scanning in forest. Silva Tarouca Research Institute.

    Google Scholar 

  • Kushwaha, S. P. S., Nandy, S., & Gupta, M. (2014). Growing stock and woody biomass assessment in Asola-Bhatti Wildlife Sanctuary, Delhi, India. Environmental Monitoring and Assessment, 186(9), 5911–5920. https://doi.org/10.1007/s10661-014-3828-0

    Article  CAS  Google Scholar 

  • Liang, X., Litkey, P., Hyyppa, J., Kaartinen, H., Vastaranta, M., & Holopainen, M. (2012). Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Transactions on Geoscience and Remote Sensing, 50(2), 661–670. https://doi.org/10.1109/TGRS.2011.2161613

    Article  Google Scholar 

  • López-Serrano, P. M., Cárdenas Domínguez, J. L., Corral-Rivas, J. J., Jiménez, E., López-Sánchez, C. A., & Vega-Nieva, D. J. (2019). Modeling of aboveground biomass with Landsat 8 OLI and machine learning in temperate forests. Forests, 11(1), 11. https://doi.org/10.3390/f11010011

    Article  Google Scholar 

  • Mon, M. S., Mizoue, N., Htun, N. Z., Kajisa, T., & Yoshida, S. (2012). Estimating forest canopy density of tropical mixed deciduous vegetation using Landsat data: A comparison of three classification approaches. International Journal of Remote Sensing, 33(4), 1042–1057. https://doi.org/10.1080/01431161.2010.549851

    Article  Google Scholar 

  • Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. Wiley.

    Google Scholar 

  • Nandy, S., Ghosh, S., Kushwaha, S. P. S., & Kumar, A. S. (2019). Remote sensing-based forest biomass assessment in northwest Himalayan landscape. In R. R. Navalgund, A. Senthil Kumar, & S. Nandy (Eds.), Remote sensing of Northwest Himalayan ecosystems (pp. 285–311). Springer. https://doi.org/10.1007/978-981-13-2128-3_13

    Chapter  Google Scholar 

  • Nandy, S., Joshi, P. K., & Das, K. K. (2003). Forest canopy density stratification using biophysical modeling. Journal of the Indian Society of Remote Sensing, 31(4), 291–297. https://doi.org/10.1007/BF03007349

    Article  Google Scholar 

  • Nandy, S., & Kushwaha, S. P. (2021). Forest biomass assessment integrating field inventory and optical remote sensing data: A systematic review. International Journal of Plant and Environment, 7(3), 181–186. https://doi.org/10.18811/ijpen.v7i03.1

    Article  Google Scholar 

  • Nandy, S., Kushwaha, S. P. S., & Dadhwal, V. K. (2011). Forest degradation assessment in the upper catchment of the river Tons using remote sensing and GIS. Ecological Indicators, 11(2), 509–513. https://doi.org/10.1016/j.ecolind.2010.07.006

    Article  Google Scholar 

  • Nandy, S., Singh, R., Ghosh, S., Watham, T., Kushwaha, S. P. S., Kumar, A. S., & Dadhwal, V. K. (2017). Neural network-based modelling for forest biomass assessment. Carbon Management, 8(4), 305–317. https://doi.org/10.1080/17583004.2017.1357402

    Article  CAS  Google Scholar 

  • Nandy, S., Srinet, R., & Padalia, H. (2021). Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using Random Forest algorithm in northwest Himalayan foothills of India. Geophysical Research Letters, 48(14), e2021GL093799. https://doi.org/10.1029/2021GL093799

    Article  Google Scholar 

  • Nuthammachot, N., Askar, A., Stratoulias, D., & Wicaksono, P. (2020). Combined use of sentinel-1 and sentinel-2 data for improving above-ground biomass estimation. Geocarto International, 37(2), 366–376. https://doi.org/10.1080/10106049.2020.1726507

    Article  Google Scholar 

  • Othmani, A., Piboule, A., Krebs, M., Stolz, C., & Voon, L. L. Y. (2011). Towards automated and operational forest inventories with T-Lidar. In 11th international conference on LiDAR applications for assessing forest ecosystems (SilviLaser 2011), Oct 2011, Hobart, Australia.

  • Pastor, J., Aber, J. D., & Melillo, J. M. (1984). Biomass prediction using generalized allometric regressions for some northeast tree species. Forest Ecology and Management, 7(4), 265–274. https://doi.org/10.1016/0378-1127(84)90003-3

    Article  Google Scholar 

  • R Core Team. 2017. R: A language and environment for statistical computing. https://www.r-project.org/

  • Rikimaru, A., Roy, P. S., & Miyatake, S. (2002). Tropical forest cover density mapping. Tropical Ecology, 43(1), 39–47.

    Google Scholar 

  • RiSCAN PRO. (2013). Manual of RiSCAN PRO operating and processing software for REIGL 3D laser scanners. Version 1.8.1.

  • Seidel, D., Albert, K., Ammer, C., Fehrmann, L., & Kleinn, C. (2013). Using terrestrial laser scanning to support biomass estimation in densely stocked young tree plantations. International Journal of Remote Sensing, 34(24), 8699–8709. https://doi.org/10.1080/01431161.2013.848308

    Article  Google Scholar 

  • Sharma, R. P., Bhandari, S. K., & Ram Bahadur, B. K. (2017). Allometric bark biomass model for Daphne bholua in the Mid-hills of Nepal. Mountain Research and Development, 37(2), 206–215. https://doi.org/10.1659/MRD-JOURNAL-D-16-00052.1

    Article  Google Scholar 

  • Shrestha, D. B., Sharma, R. P., & Bhandari, S. K. (2018). Individual tree aboveground biomass for Castanopsis indica in the mid-hills of Nepal. Agroforestry Systems, 92(6), 1611–1623. https://doi.org/10.1007/s10457-017-0109-2

    Article  Google Scholar 

  • Sium, M.T. (2015). Application of very high resolution imagery and terrestrial laser scanning for estimating carbon stock in tropical rain forest of Royal Belum, Malaysia. Master’s thesis, University of Twente, The Netherlands.

  • Sousa, A. M., Gonçalves, A. C., Mesquita, P., & da Silva, J. R. M. (2015). Biomass estimation with high resolution satellite images: A case study of Quercus rotundifolia. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 69–79. https://doi.org/10.1016/j.isprsjprs.2014.12.004

    Article  Google Scholar 

  • Srinet, R., Nandy, S., Padalia, H., Ghosh, S., Watham, T., Patel, N. R., & Chauhan, P. (2020). Mapping plant functional types in Northwest Himalayan foothills of India using random forest algorithm in Google Earth Engine. International Journal of Remote Sensing, 41(18), 7296–7309. https://doi.org/10.1080/01431161.2020.1766147

    Article  Google Scholar 

  • Takoudjou, S. M., Ploton, P., Sonké, B., Hackenberg, J., Griffon, S., de Coligny, F., Kamdem, N. G., Libalah, M., Mofack, G., Moguédec, G. L., Pélissier, R., & Barbier, N. (2017). Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods in Ecology and Evolution, 9(4), 905–916. https://doi.org/10.1111/2041-210X.12933

    Article  Google Scholar 

  • Tansey, K., Selmes, N., Anstee, A., Tate, N. J., & Denniss, A. (2009). Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. International Journal of Remote Sensing, 30(19), 5195–5209. https://doi.org/10.1080/01431160902882587

    Article  Google Scholar 

  • Tesfai, A. S. (2015). Upscaling estimation of tropical rain forest biomass/carbon stock using TLS and Landsat-8 ETM+ data: A case study from Royal Belum, Malaysia. Master’s thesis, University of Twente.

  • Thies, M., & Spiecker, H. (2004). Evaluation and future prospects of terrestrial laser scanning for standardized laser scanning for standardized forest inventories. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8), 192–197.

    Google Scholar 

  • Trochta, J., Krůček, M., Vrška, T., & Král, K. (2017). 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PLoS ONE, 12(5), e0176871. https://doi.org/10.1371/journal.pone.0176871

    Article  CAS  Google Scholar 

  • Virgulino-Júnior, P. C. C., Carneiro, D. N., Nascimento, W. R., Jr., Cougo, M. F., & Fernandes, M. E. B. (2020). Biomass and carbon estimation for scrub mangrove forests and examination of their allometric associated uncertainties. PLoS ONE, 15(3), e0230008. https://doi.org/10.1371/journal.pone.0230008

    Article  CAS  Google Scholar 

  • Wang, W., Zhao, W., Huang, L., Vimarlund, V., & Wang, Z. (2014). Applications of terrestrial laser scanning for tunnels: A review. Journal of Traffic and Transportation Engineering, 1(5), 325–337. https://doi.org/10.1016/S2095-7564(15)30279-8

    Article  Google Scholar 

  • Wassihun, A. N., Hussin, Y. A., Van Leeuwen, L. M., & Latif, Z. A. (2019). Effect of forest stand density on the estimation of above ground biomass/carbon stock using airborne and terrestrial LIDAR derived tree parameters in tropical rain forest, Malaysia. Environmental Systems Research, 8, 27. https://doi.org/10.1186/s40068-019-0155-z

    Article  Google Scholar 

  • Wykoff, W. R., Crookston, N. L., & Stage, A. R. (1982). User’s guide to the stand prognosis model, USDA forest service - general technical report INT-133.

  • Xing, D., Bergeron, J. C., Solarik, K. A., Tomm, B., Macdonald, S. E., Spence, J. R., & He, F. (2019). Challenges in estimating forest biomass: Use of allometric equations for three boreal tree species. Canadian Journal of Forest Research, 49(12), 1613–1622. https://doi.org/10.1139/cjfr-2019-0258

    Article  Google Scholar 

  • Yadav, B. K. V., & Nandy, S. (2015). Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques. Environmental Monitoring and Assessment, 187(5), 308. https://doi.org/10.1007/s10661-015-4551-1

    Article  CAS  Google Scholar 

  • Yang, X., Strahler, A. H., Schaaf, C. B., Jupp, D. L., Yao, T., Zhao, F., Wang, Z., Culvenor, D. S., Newnham, G. J., Lovell, J. L., Dubayah, R. O., Woodcock, C. E., & Ni-Meister, W. (2013). Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®). Remote Sensing of Environment, 135, 36–51. https://doi.org/10.1016/j.rse.2013.03.020

    Article  Google Scholar 

  • Yu, X., Liang, X., Hyyppä, J., Kankare, V., Vastaranta, M., & Holopainen, M. (2013). Stem biomass estimation based on stem reconstruction from terrestrial laser scanning point clouds. Remote Sensing Letters, 4(4), 344–353. https://doi.org/10.1080/2150704X.2012.734931

    Article  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP) for financial support during the study. The authors are thankful to the Head, Forestry and Ecology Department of the Indian Institute of Remote Sensing (IIRS), Director, IIRS and CSSTEAP for their encouragement and support in this study. The authors wish to acknowledge the Divisional Forest Officer, Dehradun Forest Division and staff of Barkot Forest Range, Dehradun Forest Division, Government of Uttarakhand, India and field staff of Barkot Flux Research Site for field support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Nandy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, S.K., Nandy, S. Forest Aboveground Biomass Prediction by Integrating Terrestrial Laser Scanning Data, Landsat 8 OLI-Derived Forest Canopy Density and Spectral Indices. J Indian Soc Remote Sens 52, 813–824 (2024). https://doi.org/10.1007/s12524-023-01687-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01687-z

Keywords

Navigation