Skip to main content

Advertisement

Log in

Application of Machine Learning and Geospatial Techniques for Groundwater Potential Mapping

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Groundwater potential (GWP) mapping in the drought prone hard rock terrains is a fundamental aspect towards development and management for the society and environment. The present research was carried out in parts of drought prone Manjeera basin, of Deccan basaltic province, India. This research aims to delineate GWP zones using application of machine learning (ML) models namely random forest (RF), support-vector machine (SVM) and artificial neural network (ANN) with geospatial technique to integrate hydrogeological/ geo-environmental groundwater conditioning variables. A total of 1598 well inventory data of groundwater was utilized in a 70:30 ratio of training and testing, respectively. The 3 ML models categorized the GWP zone into five classes namely excellent, good, moderate, poor and very poor. The RF, SVM and ANN models demonstrated that favourable GWP zone (excellent GWP + Good GWP) spatially accounts for 37.85, 38.82 and 32.36% of the study area, respectively. The model predictability was quantified using area under the receiver operation characteristics (ARUROC) curve values, which exhibits RF model with highest success rate (81.62%) followed by SVM (79.10%) and ANN (77.18%) model. This research proves that application of ML models with geospatial technique is a way forward for groundwater resource development and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal, E., Agarwal, R., Garg, R. D., & Garg, P. K. (2013). Delineation of groundwater potential zone: an AHP/ANP approach. Journal of Earth System Science122(3), 887–898. https://doi.org/10.1007/s12040-013-0309-8

    Article  Google Scholar 

  • Ahmad, I., Dar, M. A., Fenta, A., Halefom, A., Nega, H., Andualem, T. G., & Teshome, A. (2021). Spatial configuration of groundwater potential zones using OLS regression method. Journal of African Earth Sciences, 177, 104147. https://doi.org/10.1016/j.jafrearsci.2021.104147

    Article  Google Scholar 

  • Andualem, T. G., & Demeke, G. G. (2019). Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies, 24, 100610. https://doi.org/10.1016/j.ejrh.2019.100610

    Article  Google Scholar 

  • Arshad, A., Zhang, Z., Zhang, W., & Dilawar, A. (2020). Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: A case study from an agro-urban region of Pakistan. Geoscience Frontiers11(5), 1805–1819. https://doi.org/10.1016/j.gsf.2019.12.013

    Article  Google Scholar 

  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: A case study from southern Western Ghats, India. Scientific Reports, 9(1), 1–17. https://doi.org/10.1038/s41598-019-38567-x

    Article  Google Scholar 

  • Ashraf, B., AghaKouchak, A., Alizadeh, A., Baygi, M. M., Moftakhari, H. R., Mirchi, A., Anjileli, H., & Madani, K. (2017). Quantifying anthropogenic stress on groundwater resources. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-12877-4

    Article  Google Scholar 

  • Awadh, S. M., Al-Mimar, H., & Yaseen, Z. M. (2021). Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq. Environment, Development and Sustainability, 23(1), 1–21. https://doi.org/10.1007/s10668-019-00578-z

    Article  Google Scholar 

  • Berhanu, K. G., & Hatiye, S. D. (2020). Identification of groundwater potential zones using proxy data: Case study of Megech watershed, Ethiopia. Journal of Hydrology: Regional Studies, 28, 100676. https://doi.org/10.1016/j.ejrh.2020.100676

    Article  Google Scholar 

  • Charan, V. S., Jyothi, B. N., Saha, R., Wankhede, T., Das, I. C., & Venkatesh, J. (2020). An Integrated Geohydrology and Geomorphology Based Subsurface Solid Modelling for Site Suitability of Artificial Groundwater Recharge: Bhalki Micro-watershed, Karnataka. Journal of the Geological Society of India96(5), 458–466. https://doi.org/10.1007/s12594-020-1583-0

  • Chen, W., Li, H., Hou, E., Wang, S., Wang, G., Panahi, M., Li, T., Peng, T., Guo, C., Xiao, L., Wang, J., Xie, X., & Ahmad, B. B. (2018). GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Science of the Total Environment, 634, 853–867. https://doi.org/10.1016/j.scitotenv.2018.04.055

    Article  Google Scholar 

  • Choubin, B., Rahmati, O., Soleimani, F., Alilou, H., Moradi, E., & Alamdari, N. (2019). Regional groundwater potential analysis using classification and regression trees. In Spatial modeling in GIS and R for earth and environmental sciences (pp. 485–498). Elsevier. https://doi.org/10.1016/B978-0-12-815226-3.00022-3

  • Das, S. (2019). Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India. Groundwater for Sustainable Development, 8, 617–629. https://doi.org/10.1016/j.gsd.2019.03.003

    Article  Google Scholar 

  • Das, B., & Pal, S. C. (2020a). Assessment of groundwater vulnerability to over-exploitation using MCDA, AHP, fuzzy logic and novel ensemble models: A case study of Goghat-I and II blocks of West Bengal, India. Environmental Earth Sciences, 79(5), 1–16. https://doi.org/10.1007/s12665-020-8843-6

    Article  Google Scholar 

  • Das, B., & Pal, S. C. (2020b). Irrigation practices causing vulnerability of groundwater resources in water scarce Goghat-I and II Blocks of Hugli District using MCDA, AHP, Fuzzy logic and novel ensemble models. Advances in Space Research, 65(12), 2733–2748. https://doi.org/10.1016/j.asr.2020.03.027

    Article  Google Scholar 

  • Das, I. C., Kumar, K. V., Rajasekhar, D., Bhattacharya, A., Reddy, P. R., Subramanian, S. K., Seshadri, K., Sreenivasa Reddy, G., & Srivastav, S. K. (2021). IRS-1C satellite data utilization for groundwater prospects mapping for the entire country under National Rural Drinking Water Program (NRDWP): A State of the Art Initiative. Journal of the Indian Society of Remote Sensing,, 1–10. https://doi.org/10.1007/s12524-021-01308-7

  • Dhanaraj, G. (2021). Study of selected influential criteria on groundwater potential storage using geospatial technology and multi-criteria decision analysis (MCDA) approach: A case study. The Egyptian Journal of Remote Sensing and Space Science. https://doi.org/10.1016/j.ejrs.2021.06.004

    Article  Google Scholar 

  • Díaz-Alcaide, S., & Martínez-Santos, P. (2019). Advances in groundwater potential mapping. Hydrogeology Journal, 27(7), 2307–2324. https://doi.org/10.1007/s10040-019-02001-3

    Article  Google Scholar 

  • Doke, A. B., Zolekar, R. B., Patel, H., & Das, S. (2021). Geospatial mapping of groundwater potential zones using multi-criteria decision-making AHP approach in a hardrock basaltic terrain in India. Ecological Indicators, 127, 107685. https://doi.org/10.1016/j.ecolind.2021.107685

    Article  Google Scholar 

  • Edet, A. E., & Okereke, C. S. (1997). Assessment of hydrogeological conditions in basement aquifers of the Precambrian Oban massif, southeastern Nigeria. Journal of Applied Geophysics, 36(4), 195–204. https://doi.org/10.1016/S0926-9851(96)00049-3

    Article  Google Scholar 

  • Egan, J. P., & Egan, J. P. (1975). Signal detection theory and ROC-analysis. Academic press.

  • Etikala, B., Golla, V., Li, P., & Renati, S. (2019). Deciphering groundwater potential zones using MIF technique and GIS: A study from Tirupati area, Chittoor District, Andhra Pradesh, India. HydroResearch, 1, 1–7. https://doi.org/10.1016/j.hydres.2019.04.001

    Article  Google Scholar 

  • Fenta, A. A., Kifle, A., Gebreyohannes, T., & Hailu, G. (2015). Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeology Journal, 23(1), 195–206. https://doi.org/10.1007/s10040-014-1198-x

    Article  Google Scholar 

  • Geological Survey of India (2021) Lithology map. https://bhukosh.gsi.gov.in/. Accessed on 15 Jan 2021

  • Golkarian, A., Naghibi, S. A., Kalantar, B., & Pradhan, B. (2018). Groundwater potential mapping using C5. 0, random forest, and multivariate adaptive regression spline models in GIS. Environmental monitoring and assessment190(3), 1–16. https://doi.org/10.1007/s10661-018-6507-8

  • Gopaiah, M., Saha, R., Das, I. C., Sankar, G. J., & Kumar, K. V. (2021). Quantitative assessment of aquifer potential in near shore coastal region using geospatial techniques and ground penetrating radar. Estuarine, Coastal and Shelf Science, 262, 107590. https://doi.org/10.1016/j.ecss.2021.107590

    Article  Google Scholar 

  • Hong, H., Pradhan, B., Bui, D. T., Xu, C., Youssef, A. M., & Chen, W. (2017). Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: A case study at Suichuan area (China). Geomatics, Natural Hazards and Risk, 8(2), 544–569. https://doi.org/10.1080/19475705.2016.1250112

    Article  Google Scholar 

  • IMD (2021). Gridded rainfall data. https://www.imdpune.gov.in, accessed on 12jan2021

  • Jenifer, M. A., & Jha, M. K. (2017). Comparison of analytic hierarchy process, catastrophe and entropy techniques for evaluating groundwater prospect of hard-rock aquifer systems. Journal of Hydrology, 548, 605–624. https://doi.org/10.1016/j.jhydrol.2017.03.023

    Article  Google Scholar 

  • Kadam, A., Karnewar, A. S., Umrikar, B., & Sankhua, R. N. (2019). Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method. Environment, Development and Sustainability21(4), 1809–1833. https://doi.org/10.1007/s10668-018-0104-4

  • Kalantar, B., Pradhan, B., Naghibi, S.A., Motevalli, A. and Mansor, S. (2018). Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards and Risk, 9(1), 49–69. https://doi.org/10.1080/19475705.2017.1407368

  • Khanna, K., Martha, T. R., Roy, P., & Kumar, K. V. (2021). Effect of time and space partitioning strategies of samples on regional landslide susceptibility modelling. Landslides, 18(6), 2281–2294. https://doi.org/10.1007/s10346-021-01627-3

    Article  Google Scholar 

  • Kim, J. C., Jung, H. S., & Lee, S. (2018). Groundwater productivity potential mapping using frequency ratio and evidential belief function and artificial neural network models: Focus on topographic factors. Journal of Hydroinformatics, 20(6), 1436–1451. https://doi.org/10.2166/hydro.2018.120

    Article  Google Scholar 

  • Kordestani, M. D., Naghibi, S. A., Hashemi, H., Ahmadi, K., Kalantar, B., & Pradhan, B. (2019). Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeology Journal, 27(1), 211–224. https://doi.org/10.1007/s10040-018-1848-5

    Article  Google Scholar 

  • Kumar, V. A., Mondal, N. C., & Ahmed, S. (2020). Identification of groundwater potential zones using RS, GIS and AHP techniques: A case study in a part of Deccan volcanic province (DVP), Maharashtra, India. Journal of the Indian Society of Remote Sensing, 48(3), 497–511. https://doi.org/10.1007/s12524-019-01086-3

    Article  Google Scholar 

  • Kunnath-Poovakka, A., & Eldho, T. I. (2019). A comparative study of conceptual rainfall-runoff models GR4J, AWBM and Sacramento at catchments in the upper Godavari river basin. India. Journal of Earth System Science, 128(2), 1–15. https://doi.org/10.1007/s12040-018-1055-8

    Article  Google Scholar 

  • Lanillos, P., Oliva, D., Philippsen, A., Yamashita, Y., Nagai, Y., & Cheng, G. (2020). A review on neural network models of schizophrenia and autism spectrum disorder. Neural Networks, 122, 338–363. https://doi.org/10.1016/j.neunet.2019.10.014

    Article  Google Scholar 

  • Lee, S., Song, K. Y., Kim, Y., & Park, I. (2012). Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeology Journal, 20(8), 1511–1527. https://doi.org/10.1007/s10040-012-0894-7

    Article  Google Scholar 

  • Lee, S., Hong, S. M., & Jung, H. S. (2018). GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea. Geocarto International, 33(8), 847–861. https://doi.org/10.1080/10106049.2017.1303091

    Article  Google Scholar 

  • Lentswe, G. B., & Molwalefhe, L. (2020). Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. Journal of Hydrology: Regional Studies, 28, 100674. https://doi.org/10.1016/j.ejrh.2020.100674

    Article  Google Scholar 

  • Madani, A., & Niyazi, B. (2015). Groundwater potential mapping using remote sensing techniques and weights of evidence GIS model: A case study from Wadi Yalamlam basin, Makkah Province, Western Saudi Arabia. Environmental Earth Sciences, 74(6), 5129–5142. https://doi.org/10.1007/s12665-015-4524-2

    Article  Google Scholar 

  • Masroor, M., Rehman, S., Sajjad, H., Rahaman, M. H., Sahana, M., Ahmed, R., & Singh, R. (2021). Assessing the impact of drought conditions on groundwater potential in Godavari Middle Sub-Basin, India using analytical hierarchy process and random forest machine learning algorithm. Groundwater for Sustainable Development, 13, 100554. https://doi.org/10.1016/j.gsd.2021.100554

    Article  Google Scholar 

  • Miraki, S., Zanganeh, S. H., Chapi, K., Singh, V. P., Shirzadi, A., Shahabi, H., & Pham, B. T. (2019). Mapping groundwater potential using a novel hybrid intelligence approach. Water Resources Management, 33(1), 281–302. https://doi.org/10.1007/s11269-018-2102-6

    Article  Google Scholar 

  • Naghibi, S. A., & Pourghasemi, H. R. (2015). A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resources Management, 29(14), 5217–5236. https://doi.org/10.1007/s11269-015-1114-8

    Article  Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 1–27. https://doi.org/10.1007/s10661-015-5049-6

    Article  Google Scholar 

  • Naghibi, S. A., Ahmadi, K., & Daneshi, A. (2017a). Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management, 31(9), 2761–2775. https://doi.org/10.1007/s11269-017-1660-3

    Article  Google Scholar 

  • Naghibi, S. A., Moghaddam, D. D., Kalantar, B., Pradhan, B., & Kisi, O. (2017b). A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. Journal of Hydrology, 548, 471–483. https://doi.org/10.1016/j.jhydrol.2017.03.020

    Article  Google Scholar 

  • Nguyen, P. T., Ha, D. H., Avand, M., Jaafari, A., Nguyen, H. D., Al-Ansari, N., Van Phong, T., Sharma, R., Kumar, R., Le, H. V., & Ho, L. S. (2020a). Soft computing ensemble models based on logistic regression for groundwater potential mapping. Applied Sciences, 10(7), 2469. https://doi.org/10.3390/app10072469

    Article  Google Scholar 

  • Nguyen, P. T., Ha, D. H., Jaafari, A., Nguyen, H. D., Van Phong, T., Al-Ansari, N., Prakash, I., Van Le, H., & Pham, B. T. (2020b). Groundwater potential mapping combining artificial neural network and real AdaBoost ensemble technique: The DakNong province case-study, Vietnam. International Journal of Environmental Research and Public Health, 17(7), 2473. https://doi.org/10.3390/ijerph17072473

    Article  Google Scholar 

  • NRDWP (2021). Hydrogeomorphology map. https://bhuvan.nrsc.gov.in/, accessed on 12 May 2021

  • Oikonomidis, D., Dimogianni, S., Kazakis, N., & Voudouris, K. (2015). A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology, 525, 197–208. https://doi.org/10.1016/j.jhydrol.2015.03.056

    Article  Google Scholar 

  • Panahi, M., Sadhasivam, N., Pourghasemi, H. R., Rezaie, F., & Lee, S. (2020). Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). Journal of Hydrology, 588, 125033. https://doi.org/10.1016/j.jhydrol.2020.125033

    Article  Google Scholar 

  • Park, S., Hamm, S. Y., Jeon, H. T., & Kim, J. (2017). Evaluation of logistic regression and multivariate adaptive regression spline models for groundwater potential mapping using R and GIS. Sustainability, 9(7), 1157. https://doi.org/10.3390/su9071157

    Article  Google Scholar 

  • Pham, B. T., Jaafari, A., Prakash, I., Singh, S. K., Quoc, N. K., & Bui, D. T. (2019). Hybrid computational intelligence models for groundwater potential mapping. CATENA, 182, 104101. https://doi.org/10.1016/j.catena.2019.104101

    Article  Google Scholar 

  • Pradhan, A. M. S., Kim, Y. T., Shrestha, S., Huynh, T. C., & Nguyen, B. P. (2021). Application of deep neural network to capture groundwater potential zone in mountainous terrain, Nepal Himalaya. Environmental Science and Pollution Research, 28(15), 18501–18517. https://doi.org/10.1007/s11356-020-10646-x

    Article  Google Scholar 

  • Prasad, P., Loveson, V. J., Kotha, M., & Yadav, R. (2020). Application of machine learning techniques in groundwater potential mapping along the west coast of India. Giscience & Remote Sensing, 57(6), 735–752. https://doi.org/10.1080/15481603.2020.1794104

    Article  Google Scholar 

  • Preeja, K. R., Joseph, S., Thomas, J., & Vijith, H. (2011). Identification of groundwater potential zones of a tropical river basin (Kerala, India) using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 39(1), 83–94. https://doi.org/10.1007/s12524-011-0075-5

    Article  Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena, 137, 360–372. https://doi.org/10.1016/j.catena.2015.10.010

    Article  Google Scholar 

  • Rajasekhar, M., Raju, G. S., Sreenivasulu, Y., & Raju, R. S. (2019). Delineation of groundwater potential zones in semi-arid region of Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. HydroResearch, 2, 97–108. https://doi.org/10.1016/j.hydres.2019.11.006

    Article  Google Scholar 

  • Rohde, M. M., Froend, R., & Howard, J. (2017). A global synthesis of managing groundwater dependent ecosystems under sustainable groundwater policy. Groundwater, 55(3), 293–301. https://doi.org/10.1111/gwat.12511

    Article  Google Scholar 

  • Sachdeva, S., & Kumar, B. (2021). Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan), India. Stochastic Environmental Research and Risk Assessment, 35(2), 287–306. https://doi.org/10.1007/s00477-020-01891-0

    Article  Google Scholar 

  • Saha, R., Kumar, G. P., Pandiri, M., Das, I. C., Rao, P. N., Reddy, K. S. N., & Kumar K, V. (2018). Knowledge Guided Integrated Geo-Hydrological, Geo-Mathematical and GIS based Groundwater Draft Estimation Modelling in Budhan Pochampalli Watershed, Nalgonda District, Telangana State, India. Earth Science India11(4). https://doi.org/10.31870/ESI.11.4.2018.14

  • Saha, R., Mitran, T., Mukherjee, S., Das, I. C., & Kumar, K. V. (2021). Groundwater Management for Irrigated Agriculture Through Geospatial Techniques. In Geospatial Technologies for Crops and Soils (pp. 455–488). Springer. https://doi.org/10.1007/978-981-15-6864-0_13

  • Samson, S., & Elangovan, K. (2015). Delineation of groundwater recharge potential zones in Namakkal District, Tamilnadu, India using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 43(4), 769–778. https://doi.org/10.1007/s12524-014-0442-0

    Article  Google Scholar 

  • Samui, P. (2008). Slope stability analysis: A support vector machine approach. Environmental Geology, 56(2), 255. https://doi.org/10.1007/s00254-007-1161-4

    Article  Google Scholar 

  • Sapkota, S., Pandey, V. P., Bhattarai, U., Panday, S., Shrestha, S. R., & Maharjan, S. B. (2021). Groundwater potential assessment using an integrated AHP-driven geospatial and field exploration approach applied to a hard-rock aquifer Himalayan watershed. Journal of Hydrology: Regional Studies, 37, 100914. https://doi.org/10.1016/j.ejrh.2021.100914

    Article  Google Scholar 

  • Shailaja, G., Kadam, A. K., Gupta, G., Umrikar, B. N., & Pawar, N. J. (2019). Integrated geophysical, geospatial and multiple-criteria decision analysis techniques for delineation of groundwater potential zones in a semi-arid hard-rock aquifer in Maharashtra, India. Hydrogeology Journal, 27(2), 639–654. https://doi.org/10.1007/s10040-018-1883-2

    Article  Google Scholar 

  • Shekhar, S., & Pandey, A. C. (2015). Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto International, 30(4), 402–421. https://doi.org/10.1080/10106049.2014.894584

    Article  Google Scholar 

  • Singh, P., Thakur, J. K., & Kumar, S. (2013). Delineating groundwater potential zones in a hard-rock terrain using geospatial tool. Hydrological Sciences Journal, 58(1), 213–223. https://doi.org/10.1080/02626667.2012.745644

    Article  Google Scholar 

  • Sinha, D. D., Mohapatra, S. N., & Pani, P. (2012). Mapping and assessment of groundwater potential in bilrai watershed (Shivpuri District, MP)—A geomatics approach. Journal of the Indian Society of Remote Sensing, 40(4), 649–668. https://doi.org/10.1007/s12524-011-0175-2

    Article  Google Scholar 

  • Tahmassebipoor, N., Rahmati, O., Noormohamadi, F., & Lee, S. (2016). Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arabian Journal of Geosciences, 9(1), 79. https://doi.org/10.1007/s12517-015-2166-z

    Article  Google Scholar 

  • Tamiru, H., & Wagari, M. (2021). Comparison of ANN model and GIS tools for Delineation of Groundwater Potential Zones, Fincha Catchment, Abay Basin, Ethiopia. Geocarto International, 1–13. https://doi.org/10.1080/10106049.2021.1946171

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343. https://doi.org/10.1016/j.jhydrol.2014.03.008

    Article  Google Scholar 

  • Tehrany, M. S., Pradhan, B., Mansor, S., & Ahmad, N. (2015). Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA, 125, 91–101. https://doi.org/10.1016/j.catena.2014.10.017

    Article  Google Scholar 

  • Tessema, A., Mengistu, H., Chirenje, E., Abiye, T. A., & Demlie, M. B. (2012). The relationship between lineaments and borehole yield in North West Province, South Africa: Results from geophysical studies. Hydrogeology Journal, 20(2), 351–368. https://doi.org/10.1007/s10040-011-0803-5

    Article  Google Scholar 

  • Thapa, R., Gupta, S., Gupta, A., Reddy, D. V., & Kaur, H. (2018). Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India. Hydrogeology Journal, 26(3), 899–922. https://doi.org/10.1007/s10040-017-1683-0

    Article  Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory, 840 Springer-Verlag New York. Inc., 841, p 842,

  • Yao, X., Tham, L. G., & Dai, F. C. (2008). Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China. Geomorphology, 101(4), 572–582. https://doi.org/10.1016/j.geomorph.2008.02.011

    Article  Google Scholar 

  • Youssef, A. M., Pourghasemi, H. R., Pourtaghi, Z. S., & Al-Katheeri, M. M. (2016). Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5), 839–856. https://doi.org/10.1007/s10346-015-0614-1

    Article  Google Scholar 

  • Zaveri, E., Grogan, D. S., Fisher-Vanden, K., Frolking, S., Lammers, R. B., Wrenn, D. H., Prusevich, A., & Nicholas, R. E. (2016a). Invisible water, visible impact: Groundwater use and Indian agriculture under climate change. Environ Res Let, 11(8), 084005.

    Article  Google Scholar 

  • Zaveri, E., Grogan, D. S., Fisher-Vanden, K., Frolking, S., Lammers, R. B., Wrenn, D. H., Prusevich, A., & Nicholas, R. E. (2016b). Invisible water, visible impact: Groundwater use and Indian agriculture under climate change. Environmental Research Letters, 11(8), 084005.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to Dr. Raj Kumar, Director, NRSC, Dr. V V Rao, Deputy Director, RSA NRSC, colleagues of Geosciences and of NRSC, for their encouragement and help to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Saha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, R., Baranval, N.K., Das, I.C. et al. Application of Machine Learning and Geospatial Techniques for Groundwater Potential Mapping. J Indian Soc Remote Sens 50, 1995–2010 (2022). https://doi.org/10.1007/s12524-022-01582-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01582-z

Keywords

Navigation