Skip to main content
Log in

Analysis of a Long-Term IMD Gridded Rainfall Data for Dry Period in Meghalaya

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Rainfall is one of the most important hydro meteorological parameter for an agrarian economy. However, its distribution is uncertain on space and time. Hence, it is important to have knowledge of the distribution of rainfall for planning of various water management resources. The lack of observed data about rainfall has been a major limitation, but with the availability of the gridded data the constraints can be overcome. In the present study, spatial and temporal variation of rainfall was studied for Meghalaya using IMD gridded data. The data was downloaded for 70 years during the period of 1951–2020 at 0.25° × 0.25° resolution. Standard Precipitation Index (SPI) was also calculated to examine the variation of rainfall during dry and wet periods. The study indicated that there exists a wide variation (1536.22 to 7361.44 mm annually) in rainfall within the state. It was observed that the variation varies from 5.1 to 12.02 mm in December month and 166.73 to 469.33 mm on post-monsoon scale. The SPI analysis indicates districts of Garo hills, Ribhoi and some parts of Jaintia hills experiences significantly more dry periods. Hence suitable location-based water resources management practices for soil and water conservation have to be planned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, L., Parvaze, S., Majid, M., &Kanth, R. H. (2016). Analysis of historical rainfall data for drought investigation using standard precipitation index (SPI) under temperate conditions of Srinagar Kashmir. Pakistan Journal of Meteorology Vol13(25).

  • Akinsanola, A. A., & Ogunjobi, K. O. (2014). Analysis of rainfall and temperature variability over Nigeria. Global Journal of Human-Social Science: B Geography, Geo-Sciences, Environmental Disaster Management, 14(3), 1–19.

    Google Scholar 

  • Banacos, P. C. (2011). Eastern region technical attachment box and whisker plots for local climate datasets: interpretation and creation using Excel 2007/2010 interpretation. A Journal of Bible and Theology, 1, 2–20. https://doi.org/10.1007/s00338-013-1085-2

    Article  Google Scholar 

  • Behera, R. N., Nayak, D. K., Andersen, P., & Måren, I. E. (2016). From jhum to broom: agricultural land-use change and food security implications on the meghalaya plateau india. Ambio, 45(1), 63–77.

    Article  Google Scholar 

  • Buytaert, W., Celleri, R., Willems, P., De Bievre, B., & Wyseure, G. (2006). Spatial and temporal rainfall variability in mountainous areas: a case study from the south ecuadorian andes. Journal of Hydrology, 329(3–4), 413–421.

    Article  Google Scholar 

  • Chen, F. W., & Liu, C. W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209–222.

    Article  Google Scholar 

  • Deka, R. L., & Nath, K. K. (2000). Rainfall analysis for rainfed crop planning in the upper. Journal Agrometeorol, 2(1), 47–53.

    Article  Google Scholar 

  • Deng, S., Chen, T., Yang, N., Qu, L., Li, M., & Chen, D. (2018). Spatial and temporal distribution of rainfall and drought characteristics across the pearl river basin. Science of the Total Environment, 619, 28–41.

    Article  Google Scholar 

  • Deshmukh, N. A., Patel, R. K., Verma, V. K., Firke, D. M., & Jha, A. K. (2013). Potential fruits and plantation crops of Meghalaya. Horticulture for Economic prosperity and Nutritional security in 21st Century, 225–242.

  • Englund, E., Weber, D., & Leviant, N. (1992). The effects of sampling design parameters on block selection. Mathematical Geology, 24(3), 329–343.

    Article  Google Scholar 

  • Gadgil, S. (2003). The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences, 31(1), 429–467.

    Article  Google Scholar 

  • Gajbhiye, S., Meshram, C., Mirabbasi, R., & Sharma, S. K. (2016). Trend analysis of rainfall time series for Sindh river basin in India. Theoretical and Applied Climatology, 125(3), 593–608.

    Article  Google Scholar 

  • Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113–129.

    Article  Google Scholar 

  • Goswami, B. B., Mukhopadhyay, P., Mahanta, R., & Goswami, B. N. (2010). Multiscale interaction with topography and extreme rainfall events in the northeast Indian region. J Geophys Res Atmos, 115(D12).

  • Indian Meteorological Department: Free Download Yearly Gridded data: www.imd.pune.gov.in. Accessed 5 March 2021.

  • Jain, S. K., & Kumar, V. (2012). Trend analysis of rainfall and temperature data for India. Current Sci, 37–49.

  • Jeeva, S. R. D. N., Laloo, R. C., & Mishra, B. P. (2006). Traditional agricultural practices in Meghalaya, North East India.

  • Khozeymehnezhad, H., & Tahroudi, M. N. (2019). Annual and seasonal distribution pattern of rainfall in Iran and neighboring regions. Arabian Journal of Geosciences, 12(8), 1–11.

    Article  Google Scholar 

  • Kokilavani, S., Selvi, R. P., Panneerselvam, S., & Dheebakaran, G. (2017). Trend analysis of rainfall variability in western agro climatic zone of Tamil Nadu. Current World Environment: an International Research Journal of Environmental Sciences, 12(1), 181–187.

    Article  Google Scholar 

  • Kusre, B. C., & Lalringliana, J. (2014). Drought characterization and management in the east district of Sikkim India. Irrigation and Drainage, 63(5), 698–708.

    Article  Google Scholar 

  • Li, Z., He, Y., Wang, C., Wang, X., Xin, H., Zhang, W., & Cao, W. (2011). Spatial and temporal trends of temperature and precipitation during 1960–2008 at the Hengduan Mountains China. Quaternary International, 236(1–2), 127–142.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993) The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179–183).

  • Mondal, A., Khare, D., & Kundu, S. (2015). Spatial and temporal analysis of rainfall and temperature trend of India. Theoretical and Applied Climatology, 122(1), 143–158.

    Article  Google Scholar 

  • Olaniya, M., Bora, P. K., Das, S., & Chanu, P. H. (2020). Soil erodibility indices under different land uses in Ri-Bhoi district of Meghalaya (India). Science and Reports, 10(1), 1–13.

    Article  Google Scholar 

  • Pai, D. S., Rajeevan, M., Sreejith, O. P., Mukhopadhyay, B., & Satbha, N. S. (2014). Development of a new high spatial resolution (0.25× 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65(1), 1–18.

    Article  Google Scholar 

  • Parthasarathy, B., Munot, A. A., Kothawale, D. R. (1995) Monthly and seasonal time series for all India, homogeneous regions and meteorological subdivisions: 1871–1994, Res. Rep. RR-065, Indian Institute of Tropical Meteorology, Pune, India, pp. 1–113.

  • Patle, G. T., & Libang, A. (2014). Trend analysis of annual and seasonal rainfall to climate variability in north-east region of India. Journal of Applied and Natural Science, 6(2), 480–483.

    Article  Google Scholar 

  • Prakash, S. (2019). Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. Journal of hydrology571, 50–59. Prokop, P., &Walanus, A. (2015). Variation in the orographic extreme rain events over the Meghalaya Hills in northeast India in the two halves of the twentieth century. Theoretical and Applied Climatology121(1), 389–399.

  • Prakash, S., Sathiyamoorthy, V., Mahesh, C., & Gairola, R. M. (2014). An evaluation of high-resolution multisatellite rainfall products over the Indian monsoon region. International Journal of Remote Sensing, 35(9), 3018–3035.

    Article  Google Scholar 

  • Priyan, K. (2015). Spatial and temporal variability of rainfall in Anand District of Gujarat State. Aquatic Procedia, 4, 713–720. https://doi.org/10.1016/j.aqpro.2015.02.092

    Article  Google Scholar 

  • Prokop, P., Walanus, A. (2014) Changes in orographic extreme rain events over Meghalaya Hills in Northeast India in the 20th century. In EGU General Assembly Conference Abstracts (p. 2643).

  • Rajashekara, S. (2019). Annual and Seasonal Variation of Rainfall in Urban Landscapes of the Bengaluru Region, India. Environment Analysis and Ecological Studies5(3).

  • Ray, L. I., Bora, P. K., Singh, A. K., Singh, N. J., Singh, R., & Feroze, S. M. (2014). Rainfall characteristics pattern and distribution of central Meghalaya. Journal of Indian Water Resources Society, 34(2), 9–16.

    Google Scholar 

  • Sharannya, T. M., Al-Ansari, N., Deb Barma, S., & Mahesha, A. (2020). Evaluation of satellite precipitation products in simulating streamflow in a humid tropical catchment of india using a semi-distributed hydrological model. Water, 12(9), 2400.

    Article  Google Scholar 

  • Sharda, V. N., & Das, P. K. (2005). Modelling weekly rainfall data for crop planning in a sub-humid climate of India. Agricultural Water Management, 76(2), 120–138.

    Article  Google Scholar 

  • Shukla, A. K., & Shukla, (2020). S. Satellite Precipitation Estimates (SPEs) and Their Validation Using Ground-Based Measurments: A Case Study in Uttarakhand State, India. In IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium (pp. 5360–5363). IEEE.

  • Singh, N., & Sontakke, N. A. (1999). On the variability and prediction of rainfall in the post-monsoon season over India. International Journal of Climatology: A Journal of the Royal Meteorological Society, 19(3), 309–339.

    Article  Google Scholar 

  • Singh, W. R., Barman, S., Sharma, S. K., Taggu, A., Bandyopadhyay, A., & Bhadra, A. (2021). Historical and projected precipitation extremes over pare watershed in Arunachal Pradesh India. Applied Water Science, 11(3), 1–12.

    Article  Google Scholar 

  • Subramanya, K. (2008). Engineering hydrology, 3rd edn. Tata McGraw Hill, New Delhi, pp.155-162.

  • Subramanya, K. (2013). Engineering hydrology, 4th edn. Tata McGraw-Hill Education, New Delhi, pp.17–63.

  • Tarhule, A., & Woo, M. K. (1998). Changes in rainfall characteristics in northern Nigeria. A Journal of the Royal Meteorological Society, 18(11), 1261–1271.

    Google Scholar 

  • WMO (2020) Guide to Hydrological Practices, Volume I: Hydrology – From Measurement to Hydrological Information. WMO Number 168, pp

  • Woolf, A., Haines, K., & Liu, C. (2003). A web service model for climate data access on the grid. Journal of High-Performance Computing Applications, 17(3), 281–295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Kusre.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phawa, R., Kusre, B.C. & Gupta, S. Analysis of a Long-Term IMD Gridded Rainfall Data for Dry Period in Meghalaya. J Indian Soc Remote Sens 50, 1959–1977 (2022). https://doi.org/10.1007/s12524-022-01575-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01575-y

Keywords

Navigation