Skip to main content

Advertisement

Log in

Remote Sensing and Geographic Information System Applications in Hydrocarbon Exploration: A Review

  • Review Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Hydrocarbon exploration requires integration and updating of multi-source geo-scientific data for gathering knowledge of subsurface oil and gas bearing geological traps. Multi-spectral aerospace remote sensing (RS) data is an important spatial geo-scientific information source for hydrocarbon exploration, when combine with data of ground based geophysical, geochemical and well log data, using geographic information system (GIS). This paper presents a review on current status as well as future prospects of satellite RS and GIS applications in hydrocarbon exploration. In recent years, satellite RS and GIS techniques successfully used for basin wide assessment of hydrocarbon favourable areas by integration and analysis of multi-spectral RS derived geological inputs on sedimentary basin, lithology, geomorphology, terrain, geological structure, tectonic information etc. RS and digital elevation model derived geomorphic anomalies in the forms of anomalous drainage pattern and surface lineament linked with subsurface structural features are widely used in onshore hydrocarbon prospecting. Commonly, in hydrocarbon reservoirs, a well-known phenomenon called seepage (both macro and micro) is associated with oil and gas leak from subsurface accumulations to the surface. Long-term hydrocarbon seepages locally alter surface geochemical and microbial processes. Recently, hyperspectral RS successfully used in onshore hydrocarbon exploration by detection of micro-seepage based on identification and mapping of altered clay minerals, bleaching of red beds and geo-botanical effects of vegetation stress. Hyperspectral satellite derived indices viz. Hydrocarbon index, vegetation indices, and spectral angle mapper and spectral unmixing classification techniques are used in micro-seepage detection. Number of studies showed the potential utility of satellite microwave synthetic aperture radar (SAR) data for offshore petroleum exploration by identification of sea surface oil slicks produced from sea floor hydrocarbon seeps. Use of satellite altimetry remote sensing technique also attempted for offshore hydrocarbon exploration by free air gravity anomalies derived geological details from satellite estimated geoid anomalies. Limited studies also highlighted potential applications of thermal and UAV (unmanned aerial vehicle) RS in hydrocarbon exploration. GIS aided both data and knowledge driven geospatial modelling were applied for identification of favourable potential hydrocarbon areas integration of RS derived geological and vegetation anomalies and ground geophysical, geochemical and well data. Although recent and past multi-spectral RS and GIS techniques are successfully used for petroleum exploration, in depth research studies needed in the use of hyperspectral, polarimetric microwave SAR, altimetry, thermal satellite data, UAV RS, and GIS aided spatial modeling for efficiently exploring petroleum resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Source: Tian (2012)

Fig. 4
Fig. 5
Fig. 6

Source: Putra et al. (2019)

Fig. 7

Source: Ivanov and Morovic (2020)

Fig. 8

Source: Dung and Mai (2016)

Fig. 9
Fig. 10

Source: Mohammed et al. (2017)

Similar content being viewed by others

References

  • Ahmed, M. (2019). Exploration of hydrocarbon resources using remote sensing and geographical information system. AIP Conference Proceedings, 2119(020001), 1–10. https://doi.org/10.1063/1.5115360

    Article  Google Scholar 

  • Alizadeh, A., Hormozi, H., Moghadam, H., & Seraj, M. (2020). DEM-derived geomorphic indices for assessment of tectonic activity at the Dara anticlinal oil structure within the Zagros fold-thrust belt, southwestern Iran. Arabian Journal of Geoscience, 13, 1–13. https://doi.org/10.1007/s12517-020-5156-8

    Article  Google Scholar 

  • Alshayef, M. S., Javed, A., & Mohammed, M. B. (2018). Delineation of hydrocarbon potential zones in Masila oil field. Yemen, Spatial Information Research,. https://doi.org/10.1007/s41324-018-0220-0

    Article  Google Scholar 

  • Altamura, R. J. (1999). Geologic mapping using radar imagery in the Ridge and Valley province. Pennsylvania Geology, 30(3/4), 2–13.

    Google Scholar 

  • Asadzadeh, S., Oliveria, W. J. D., & Filho, C. R. D. S. (2022). UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives. Journal of Petroleum Science and Engineering, 208, 109633. https://doi.org/10.1016/j.petrol.2021.109633

    Article  Google Scholar 

  • Asadzadeh, S., & Souza Filho, C. R. (2017). Spectral remote sensing for onshore seepage characterization: A critical overview. Earth Science Reviews, 168, 48–72.

    Article  Google Scholar 

  • Asadzadeh, S., Souza Filho, C. R., Nanni, M. R., & Batezelli, A. (2019). Multi-scale mapping of oil-sands in Anhembi (Brazil) using imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformatics, 82, 101894.

    Article  Google Scholar 

  • Behadili, S. F., & Sayed, B. H. (2019). Oil and Gas explorations via satellite remote sensing techniques for Al_Nasiriya. Iraqi Journal of Science, 60(10), 2308–2314. https://doi.org/10.24996/ijs.2019.60.10.25

    Article  Google Scholar 

  • Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., & Bangash, H. A. (2014). Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69, 163–178.

    Article  Google Scholar 

  • Berger, Z. (1994). Satellite hydrocarbon exploration: Interpretation and integration techniques. Springer.

    Book  Google Scholar 

  • Bhattacharyya, R., Verma, P. K., & Majumdar, T. J. (2009). Study of high resolution satellite geoids/gravity data over the western Indian offshore region for tectonics and hydrocarbon exploration. Indian Journal of Geo-Marine Sciences, 38(1), 116–125.

    Google Scholar 

  • Burrato, P., Vannoli, P., Fracassi, U., Basili, R., & Valensise, G. (2012). Is blind faulting truly invisible? Tectonic-controlled drainage evolution in the epicentral area of the May 2012, EmiliaeRomagna earthquake sequence (northern Italy). Annals Geophysics, 55, 525–531.

    Google Scholar 

  • Chatterjee, S., Bhattacharyya, R., Michael, L., Krishna, K. S., & Majumdar, T. J. (2007). Validation of ERS-1 and high-resolution satellite gravity with in-situ ship borne gravity over the Indian offshore regions: Accuracies and implications to subsurface modeling. Marine Geodesy, 30(3), 197–216.

    Article  Google Scholar 

  • Dave, H. D., Mazumder, S., Samal, J. K., Pangtey, K. K. S., & Mitra, D. S. (2012). Mapping hydrocarbon seepages using satellite SAR data in Eastern offshore—Essential input in oil exploration. In: 9th Biennial International Conference and Exposition on Petroleum Geophysics.

  • David, L. J., Amir, H. A., Amir, H. G., & Annette, L. W. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7, 3–10.

    Article  Google Scholar 

  • Dolande, V. E., Morales, E., & Achkar, M. (2021). Evaluación del uso de sensores remotos para identificar manchas de crudo en áreas costa afuera del Uruguay. Boletín de Geología, 43(2), 185–202. https://doi.org/10.18273/revbol.v43n2-2021010

    Article  Google Scholar 

  • Dominique, D., Leo, T., & Benoit, B. (2021). Earth observation remote sensing for oil and gas: A new era. Leading Edge, 40(1), 26–34.

    Article  Google Scholar 

  • Dung, T. T., & Mai, H. T. H. (2016). Contribution of satellite altimetry data in geological structure research in the South China sea. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 XXIII ISPRS Congress, 12–19 July 2016,

  • Edessa, B. (2008). Application of remote sensing and geographic information system for petroleum exploration in Ogaden basin: Ethiopia. Thesis, Addis Ababa University, Ethiopia.

    Google Scholar 

  • Emetere, M. E. (2019). Modified satellite remote sensing technique for hydrocarbon deposit detection. Journal of Petroleum Science and Engineering, 181, 106228. https://doi.org/10.1016/j.petrol.2019.106228

    Article  Google Scholar 

  • Gani, N. D., Crowe, E., & Bowden, S. (2021). Mesoscale structures in the Rough Creek Graben. U.S. Midcontinent craton: An integrated DEM analysis, structural modeling, and field-based approach. Results in Geophysical Sciences. https://doi.org/10.1016/j.ringps.2021.100023

    Article  Google Scholar 

  • Garain, S., Mitra, D., & Das, P. (2019). Detection of hydrocarbon microseepage-induced anomalies by spectral enhancements of Landsat 7 ETM+ images inpart of Assam-Arakan Fold belt, India. Journal of Petroleum Exploration and Production Technology., 9, 2573–2582.

    Article  Google Scholar 

  • Garain, S., Mitra, D., & Das, P. (2021). Detection of hydrocarbon microseepage prospects using Landsat 8-based vegetation stress analysis in part of Assam-Arakan Fold Belt, NE India. Arabian Journal of Geosciences, 14, 1984. https://doi.org/10.1007/s12517-021-08376-6

    Article  Google Scholar 

  • Ghosh, T., Hazra, S., & Das, A. K. (2021). Potential of ALOS-2 PALSAR-2 StripMap data for lithofacies identification and geological lineament mapping in vegetated fold-thrust belt of Nagaland, India. Advances in Space Research. https://doi.org/10.1016/j.asr.2021.09.007

    Article  Google Scholar 

  • Guo, J., Fan, H., Wang, X., Zhang, L., Ren, L., He, Y., Ma, F., Meng, W., Bai, X., & Yin, J. (2019). Integrating geochemical anomaly and remote sensing methods to predict oil- and gas-bearing areas in the Yanchang oil field, Ordos Basin, China. Earth Sciences Journal. https://doi.org/10.15446/esrj.v23n1.57544

    Article  Google Scholar 

  • Gupta, R. P. (2003). Remote sensing geology (pp. 519–523). Springer.

    Book  Google Scholar 

  • Hamzeh, M., & Karimipour, F. (2020). Petroleum potential assessment using an optimized fuzzy outranking approach: A case study of the Red river petroleum system Williston basin. Energy Exploration and Exploration, 38(4), 960–988. https://doi.org/10.1177/0144598720910264

    Article  Google Scholar 

  • Hosseinpour, M. (2020). Relationship between hydrocarbon micro-seepages and structures by detection of altered minerals using ASTER remote sensing data in the West of Coastal Fars, Zagros, Iran. Arabian Journal of Geosciences, 13, 511. https://doi.org/10.1007/s12517-020-05568-4

    Article  Google Scholar 

  • Hoyer, M., Wildermann, E., Forgione, M., & Puente, T. (2004). Application of satellite altimetry technique for hydrocarbon prospecting studies in Venezuela. Interciencia, 29(5), 256–260.

    Google Scholar 

  • Huang, X., Zhenhai, Z., & Hongga, L. (2010). Remote sensing applications for petroleum resource exploration in offshore basins of China. In: IGRASS (pp. 4511–4513), IEEE.

  • Ibanez, D. M., Almeida-Filho, R., & Miranda, F. P. (2016). Analysis of SRTM data as an aid to hydrocarbon exploration in a frontier area of the Amazonas Sedimentary Basin, northern Brazil. Marine and Petroleum Geology, 23, 528–538.

    Article  Google Scholar 

  • Ivanov, AYu. (2011). Remote sensing of oil films in the context of global changes. Remote Sensing of the Changing Oceans (pp. 169–194). Springer.

    Chapter  Google Scholar 

  • Ivanov, A. Y., & Morovic, M. (2020). Oil seeps detection and mapping by SAR imagery in the Adriatic Sea. Acta Adriatica, 61(1), 13–26. https://doi.org/10.32582/aa.61.1.1

    Article  Google Scholar 

  • Jacobs, T. (2013). Data from above: The advantages of unmanned aircraft. Journal of Petroleum Technology, 65(10), 36–43.

    Article  Google Scholar 

  • Jamaludin, I. M., Abd, N. M., & Khin, C. M. (2015). Application of NIR to determine effects of hydrocarbon microseepage in oil palm vegetation stress. In: Space science and communication (pp. 215–220).

  • Jatiault, R., Dhont, D., Loncke, L., & Dubucq, D. (2017). Monitoring of natural oil seepage in the Lower Congo Basin using SAR observations. Remote Sensing of Environment, 191, 258–272. https://doi.org/10.1016/j.rse.2017.01.031

    Article  Google Scholar 

  • Khan, S. D., & Jacobson, S. (2008). Remote sensing and geochemistry for detecting hydrocarbon microseepages. Geological Society of America Bulletin, 120(1–2), 96–105.

    Article  Google Scholar 

  • Ktupnik, D., & Khan, S. D. (2017). Hydrocarbon microseepage-related geobotanical analysis in and around oil fields. The Leading Edge, 36(1), 12–23. https://doi.org/10.1190/tle36010012.1

    Article  Google Scholar 

  • Macdonald, I. R., Garcia-Pineda, O., Beet, A., Asl, D., Feng, L., Graettinger, G., French-McCay, D., Holmes, J., Hu, C., Leifer, I., Muller-Kerger, F., Solow, A., Silva, M., & Swayee, G. (2015). Natural and unnatural oil slicks in the Gulf of Mexico. Journal of Geophysical Research Oceans, 120, 8364–8380. https://doi.org/10.1002/2015JC011062

    Article  Google Scholar 

  • Mahajan, P. K., Venkatramaiah, S., Shaktawal, K. S., & Ganju, J. L. (1984). Geomorphological evolution of Indian coast with spectral reference to hydrocarbon prospects. ONGC, Unpublished report, 85 p (Referred by Prabaharan et al., 2013).

  • Majumdar, T. J., Krishna, K. S., Chatterjee, S., Bhattacharyya, R., & Michael, L. (2006). Study of high resolution satellite geoid and gravity anomaly data over the Bay of Bengal. Current Science, 90(2), 211–219.

    Google Scholar 

  • Majumdar, T. J., Mohanty, K. K., & Srivastava, A. K. (1998). On the utilization of ERS-1 altimeter data for offshore oil exploration. International Journal of Remote Sensing., 9(10), 1953–1968.

    Article  Google Scholar 

  • Majumder, T. J. (2014). Satellite geoid/gravity for offshore exploration. In J. Sunderesan, K. M. Santosh, A. Deri, R. Roggema, & R. P. Singh (Eds.), Geospatial technologies and climate change (pp. 203–218). Springer.

    Chapter  Google Scholar 

  • Mazumder, S., Adhikari, K., Mitra, D. S., Mahapatra, S., & Pangtey, K. K. S. (2016). A neotectonic based geomorphic analysis using remote sensing data to delineate potential areas of hydrocarbon exploration: Cachar area, Assam. Journal of the Geological Society of India. https://doi.org/10.1007/s12594-016-0461-2

    Article  Google Scholar 

  • Mazumder, S., Adhikari, K., Mitra, D. S., Mahapatra, S., & Pangtey, K. K. S. (2018). Delineation of subtle and obscure structures in West Bengal Shelf: A remote sensing and GIS-based parallel approach. Current Science, 115(5), 874–885. https://doi.org/10.18520/cs/v115/i5/874-885

    Article  Google Scholar 

  • Miranda, F. P., & Boa Hora, P. P. (1986). Morphostructural analysis as an aid to hydrocarbon exploration in the Amazonas Basin, Brazil. Journal of Petroleum Geology, 9, 163–178.

    Article  Google Scholar 

  • Mitra, D. S. (2011). Remote sensing and GIS in petroleum exploration. In S. Anabazhagan, S. K. Subramanian, & X. Yang (Eds.), Geoinformatics in applied geomorphology (pp. 269–290). CRC Press.

    Google Scholar 

  • Mitra, D. S., & Agarwal, R. P. (1991). Geomorphology and petroleum prospect of Cauvery basin, Tamilnadu, based on interpretation of Indian Remote Sensing Satellite (IRS) data. Journal of Indian Society of Remote Sensing, 19(4), 463–467.

    Article  Google Scholar 

  • Mohammad, A. A., Mohammad, K., & Sarab, A. A. (2015). Hydrocarbon resources potential mapping using evidential belief functions and GIS, Ahvaz/Khuzestan province, southwest Iran. Arabian Journal of Geoscience, 8, 3929–3941. https://doi.org/10.1007/s12517-014-1494-8

    Article  Google Scholar 

  • Mohammed, A. M. B., Javed, A., & Alshayef, M. S. (2017). Spatial data modeling based MCE fuzzy logic for petroleum exploration in part of Say’un-Masilah basin of Yemen. American Journal of Remote Sensing, 5(1), 1–9.

    Article  Google Scholar 

  • Mohammed, A., Palanivel, K., Kumanan, C. J., & Ramasamy, S. M. (2010). Significance of surface lineaments for gas and oil exploration in part of Sabatayn Basin-Yemen. Journal of Geography and Geology, 2(1), 119–118.

    Article  Google Scholar 

  • Najoui, Z., Riazanoff, S., Deffontaines, B., & Xavier, J. P. (2018). Estimated location of the seafloor sources of marine natural oil seeps from sea surface outbreaks: A new “source path procedure” applied to the northern Gulf of Mexico. Marine and Petroleum Geology., 91, 190–201. https://doi.org/10.1016/j.marpetgeo.2017.12.035

    Article  Google Scholar 

  • Ouko, C., Mutua, F., & Mwaniki, M. (2018). A pre-exploration technique for mapping petroleum potential areas based on induced surface alterations and possible traps. Universal Journal of Geoscience, 6(5), 158–174. https://doi.org/10.13189/ujg.2018.060503

    Article  Google Scholar 

  • Pash, R. R., Davoodi, Z., Mukherjee, S., Dehsarvi, L. H., & Ghasemi-Rozveh, T. (2021). Interpretation of aeromagnetic data to detect the deep-seated basement faults in fold thrust belts: NW part of the petroliferous Fars province, Zagros belt, Iran. Marine Geology, 133, 105292. https://doi.org/10.1016/j.marpetgeo.2021.105292

    Article  Google Scholar 

  • Pointer, G., Bartsch, A., Dvornikov, A. Y., & Kouraev, V. A. (2020). Mapping potential signs of gas emissions in ice of lake Neyto, Yamal, Russia using synthetic aperture radar and multispectral remote sensing data. The Cryosphere, 15(4), 1907–1929. https://doi.org/10.5194/tc-2020-226

    Article  Google Scholar 

  • Prabhakaran, S., Ramalingam, M., Subramani, T., & Lakshumanan, C. (2013). Remote sensing and GIS tool to detect hydrocarbon prospect in Nagapattinam Sub Basin, India. Geotechnical and Geological Engineering, 31(1), 267–277.

    Article  Google Scholar 

  • Prelat, A., Gunaratne, S., Huebner, L., Freeman, C., Cook, A., & Soriano, C. (2013). Airborne hyperspectral detection of natural offshore and onshore hydrocarbon seeps. In: Aminzadeh, F., Berge, T. B., & Connolly, D. L. (eds.), Hydrocarbon seepage: from source to surface (pp. 171–182). American Association of Petroleum Geologists, Tulsa, OK, USA.

  • Prost, D. L. (2014). Remote sensing for geoscientist—Image analysis and integration (pp. 331–351). CRC Press.

    Google Scholar 

  • Putra, M. I. J., Huda, D. N., Afdhalia, F., & Supriatna, A. (2019). Onshore oil and gas reservoir detection through mapping of hydrocarbon microseepage using remote sensing. IOP Conference: Series Earth and Environmental Science, 311, 012083. https://doi.org/10.1088/1755-1315/311/1/012083

    Article  Google Scholar 

  • Pysek, P., & PyseK, A. (1989). Veränderungen der Vegetation durch experimentelle Erdgasbehandlung. Weed Research, 29, 193–204.

    Article  Google Scholar 

  • Qin, Q., Zhang, Z., Chen, L., Wang, N., & Zhang, C. (2016). Oil and gas reservoir exploration based on hyperspectral remote sensing and super-low-frequency electromagnetic detection. Journal of Applied Remote Sensing, 10(1), 016017–016017.

    Article  Google Scholar 

  • Rapp, R. H. (1983). The determination of geoid undulations and gravity anomalies from Seasat altimeter data. Journal of Geophysical Research, 88(C3), 1552–1562.

    Article  Google Scholar 

  • Salati, S., van Ruitenbeek, F. J. A., de Smeth, J. B., & van der Meer, F. D. (2014b). Spectral and geochemical characterization of onshore hydrocarbon seep-induced alteration in the Dezful embayment, southwest Iran. AAPG Bulletin, 98(9), 1837–1857.

    Article  Google Scholar 

  • Salati, S., van Ruitenbeek, F., van der Meer, F., & Naimi, B. (2014a). Detection of alteration induced by onshore gas seeps from ASTER and WorldView-2 data. Remote Sensing, 6(4), 3188–3209.

    Article  Google Scholar 

  • Sandwell, D. T., & Smith, W. H. F. (1997). Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research, 102(B5), 10039–10054.

    Article  Google Scholar 

  • Saravanavel, J., Ramasamy, S. M., Palanivel, K. P., & Kumanan, C. J. (2020). GIS based 3D visualization of subsurface geology and mapping of probable hydrocarbon locales, part of Cauvery Basin, India. Journal of Earth System Science, 129, 36. https://doi.org/10.1007/s12040-019-1307-2

    Article  Google Scholar 

  • Seraj, M., Faghih, A., Motamedi, H., & Soleimany, B. (2020). Major tectonic lineaments influencing the oilfields of the Zagros Fold-Thrust Belt, SW Iran: Insights from integration of surface and subsurface data. Journal of Earth Science, 31(3), 596–610. https://doi.org/10.1007/s12583-020-1303-0

    Article  Google Scholar 

  • Shahi, H., & Kamkar, R. (2014). A GIS-based weights-of-evidence model for mineral potential mapping of hydrothermal gold deposits in Torbate-Heydarieh Area. Journal of Mining and Environment, 5(2), 79–89.

    Google Scholar 

  • Shao-Kang, C., & Kadir, M. K. A. (1990). The use of SAR imagery for hydrocarbon exploration in Sarawak. Geological Society Malaysia, Bulletin, 27, 161–182.

    Article  Google Scholar 

  • Shi, P., Fu, B., & Ninomiya, Y. (2010). Mapping hydrocarbon seepage-induced anomalies in the arid region, west china using multispectral remote sensing. In: International archives of the photogrammetry, remote sensing and spatial information science, Volume XXXVIII, Part 8 (pp. 442–447).

  • Smith, K. L., Steven, M. D., & Colls, J. J. (2004). Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sensing Environment, 92, 207–217.

    Article  Google Scholar 

  • Taheri, R. T., & Tait, A. M. (2021). Satellite-based hydrocarbon exploration exploration employing ASTER and fuzzy logic. Upstream Oil and Gas Technology, 6, 100034. https://doi.org/10.1016/j.upstre.2021.100034

    Article  Google Scholar 

  • Terrizzano, C. M., Cortes, J. M., Zech, R., & García Morabito, E. (2014). Drainage anomalies as indicators of soft-linked deformation zones between neotectonic structural highs in the Precordillera, Central Andes of Argentina. Geomorphology, 224, 1–15.

    Article  Google Scholar 

  • Tian, O. (2012). Study on oil-gas reservoir detecting methods using hyperspectral remote sensing. In International archives of the photogrammetry, remote sensing and spatial information sciences, Volume XXXIX-B7, 2012 XXII ISPRS Congress (pp. 157–162).

  • Van deer Meer, F., Paul, V. D., Harald, V. D. W., & Yang, H. (2002). Remote sensing and petroleum seepage: A review and case study. Terra Nova, 14, 1–17.

    Article  Google Scholar 

  • Varadarajan, K. (1969). A report of Photo-geomorphological studies carried out in parts of Cauvery basin, ONGC, unpublished report, pp. 12 (Referred by Prabaharan et al., 2013).

  • Varadarajan, K, and Balakrishnan, M. K. (1982). Structural geomorphology and neo-tectonics of peninsular India south of 140 Latitude, ONGC (unpublished report) (Referred by Prabaharan et. al., 2013).

  • Vollgger, S. A., & Cruden, A. R. (2016). Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. Journal of Structural Geology, 85, 168–187.

    Article  Google Scholar 

  • Wang, G., Ma, X., Zhang, Y., Wang, D., Lv, J., Zhang, M., & Wang, X. (2020). Reservoir fractures predicted with remote sensing data in Yingxiongling of West Qaidam Basin. In Lin, J. (Eds.), Proceedings of the international field exploration and development conference 2019. IFEDC 2019. Springer Series in Geomechanics and Geoengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2485-1_192.

  • Xu, X., Shi, W., Zhai, G., Xia, X., Zhang, X., Liu, S., Chen, X., Zhang, C., & Meng, F. (2021). A novel approach of evaluating favorable areas for shale gas exploration based on regional geological survey and remote sensing data. Journal of Natural Gas Science and Engineering, 88(103813), 1–13. https://doi.org/10.1016/j.jngse.2021.103813

    Article  Google Scholar 

  • Yang, H., Zhang, J., van der Meer, F., & Kroonenberg, S. (1999). Spectral characteristics of wheat associated with hydrocarbon microseepages. Internal Journal of Remote Sensing, 20(4), 807–813. https://doi.org/10.1080/014311699213226

    Article  Google Scholar 

  • Zargani, S. S., Vaughan, R. A., & Missallati, A. A. (2003). Spatial integration of geological datasets for predictive hydrocarbon studies in Murzuq Basin, SW Libya. In Geoscience and remote sensing symposium. Toulouse, France (pp. 991–993). USA: IEEE.

  • Zheng, G., Fu, B., Takahashi, Y., Kuno, A., Matsuo, M., & Zhang, J. (2010). Chemical speciation of redox sensitive elements during hydrocarbon leaching in the Junggar Basin, Northwest China. Journal of Asian Earth Sciences, 39(6), 713–723.

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to Dean, School of Engineering, Head, Department of Petroleum Engineering and Earth Sciences, and Dean Research of University of Petroleum and Energy Studies (UPES), Dehradun, India for their encouragement and support in the preparation of this review article. Thanks to the reviewers for their comments and suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Kumar Saha.

Ethics declarations

Conflict of interests

All authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S.K. Remote Sensing and Geographic Information System Applications in Hydrocarbon Exploration: A Review. J Indian Soc Remote Sens 50, 1457–1475 (2022). https://doi.org/10.1007/s12524-022-01540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01540-9

Keywords

Navigation