Skip to main content

Advertisement

Log in

Rock Unit Discriminations Using Image Processing Technique of Ablah Area, Arabian shield, Saudi Arabia

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Ablah area is a basin among the deformed and weakly metamorphosed, post-amalgamation volcanosedimentary sequence in the Arabian shield, Saudi Arabia. It is a promising area for some economic deposits. This study aims to construct a detailed geological map and rock unit discrimination of the area, using digital image processing techniques. The satellite digital data comprise Landsat-7 and SPOT-5 are used for regional, reconnaissance, and detailed geological mapping. The high spatial resolution (HR) digital data of SPOT-5 were processed to create a detailed lithologic and structure maps of the study area (1:10,000). The outcomes of the work reflect that the mineralization in the Ablah area (e.g., gold, copper, and associated minerals) are mainly associated with the altered metasediments and metavolcanics. The alteration zones in the Ablah area are aligned in a way controlled by structural lineaments trending NNW-SSE, WNW-ESE, NE-SW, and N-S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdelaziz, R., Abd El-Rahman, Y., & Wilhelm, S. (2018). Landsat-8 data for chromite prospecting in the Logar Massif, Afghanistan. Heliyon, 4(2), 1–18

    Article  Google Scholar 

  • Abdelkareem, M., Othman, I., & El Din, K. (2017). Lithologic mapping using remote sensing data in Abu Marawat Area, Eastern Desert of Egypt. International Journal of Remote Sensing, 6(1), 2171–2177

    Google Scholar 

  • Alanazi, H. A., & Ghrefat, H. A. (2013). Spectral analysis of multispectral landsat 7 ETM + and ASTER data for mapping land cover at Qurayah Sabkha, Northern Saudi Arabia. Journal of the Indian Society of Remote Sensing, 41, 833–844

    Article  Google Scholar 

  • Al-Shanti, A. (1993). The geology of the Arabian sheiled (in Arabic). Center of Scientific Publishing, King Abdulaziz University.

    Google Scholar 

  • Amer, R., Kusky, T., & Ghulam, A. (2009). Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Journal of African Earth Sciences, 56(2), 75–82

    Google Scholar 

  • Antonielli, B., Fidolini, F., & Righini, G. (2009). Landsat TM and Quickbird images for geological mapping in the syn-rift lower Dogali Formation (Red Sea coast, NE Eritrea). Photo-Interpretation, Paris, 3, 107–113

    Google Scholar 

  • Bamosa, A. O. (2013). Infracambrian superimposed tectonics in the late Proterozoic units of mount Ablah area, southern Asir Terrane, Arabian shield, Saudi Arabia. Arabian Journal of Geoscience, 6, 2035–2044

    Article  Google Scholar 

  • Bishta, A. Z. (2004). Lithologic discrimination of Gabal Qattar-Um Disi environs, north Eastern Desert of Egypt using thematic mapper data of Landsat-7. (pp. 541–557). Tanta University.

    Google Scholar 

  • Bishta, A. Z. (2010). Assessing utilization of multi-resolution satellite imageries in geological mapping, a case study of Jabal Bani Malik area, eastern Jeddah city, Kingdom of Saudi Arabia. JKAU: Earth Science, 21(1), 27–52

    Google Scholar 

  • Bishta, A. Z., & Sonbul, A. R. (2015). Supervised classification and lineaments extraction of SPOT-5 imageries in the Geological Mapping of Kutaina–Al Hajar Area, Arabian shield, Saudi Arabia. Life Science Journal, 12(11), 80–92

    Google Scholar 

  • Brown, G. F., & Jackson, R. O. (1960). The Arabian shield: International Geological Congress. (pp. 69–77). XXI Session.

    Google Scholar 

  • Bryant, R. G. (1996). Validated linear mixture modeling of Landsat TM data for mapping evaporite minerals on a playa surface: methods and application. International Journal of Remote Sensing, 17(2), 315–330

    Article  Google Scholar 

  • Casas, A. M., Cortes, A. L., Maestro, A., Soriano, M. A., Riaguas, A., & Bernal, J. (2000). A program for lineament length and density analysis. Computers and Geosciences, 26(9/10), 1011–1022

    Article  Google Scholar 

  • Chang, Y., Song, G., & HSU, S. . (1998). Automatic extraction of ridge and valley axes using the profile recognition and polygon-breaking algorithm. Computers and Geosciences, 24(1), 83–93

    Article  Google Scholar 

  • Cortes, A. L., Soriano, M. A., Maestro, A., & Casas, A. M. (2003). The role of tectonic inheritance in the development of recent fracture systems, Duero Basin, Spain. International Journal of Remote Sensing, 24(22), 4325–4345

    Article  Google Scholar 

  • Costa, R. D., & Starkey, J. (2001). Photo Lin: a program to identify and analyze linear structures in aerial photographs, satellite images and maps. Computers and Geosciences, 27(5), 527–534

    Article  Google Scholar 

  • Ding, Y., Zhao, K., Zheng, X., & Jiang, T. (2014). Temporal dynamics of spatial heterogeneity over cropland quantified by time-series NDVI, near infrared and red reflectance of Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 30, 139–145

    Article  Google Scholar 

  • Gabr, S. S., Hassan, S. M., & Sadek, M. F. (2015). Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geology Review, 71, 1–13. https://doi.org/10.1016/j.oregeorev.2015.04.021

    Article  Google Scholar 

  • Gad, S., & Kusky, T. (2006). Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). Journal of African Earth Sciences, 44(2), 196–202

    Article  Google Scholar 

  • Guha, A., Kumar, K. V., Rao, E. N., & Parveen, R. (2014). An image processing approach for converging ASTER-derived spectral maps for mapping Kolhan limestone, Jharkhand, India. Current Science, 106(1), 40–49

    Google Scholar 

  • Greenwood, W. R. (1975). Geology of the Al Aqiq Quadrangle, sheet 20/41D, Kingdom of Saudi Arabia, Arabian Dir. Gen. Mineral Resources Map GM-23.

  • Greenwood, W. R., Stoeser, D. B., Fleck, R. J., & Stacey, J. S. (1982). Late Proterozoic island-arc complexes and tectonic belts in the southern part of the Arabian shield, Kingdom of Saudi Arabia: Saudi Arabian Deputy Ministry for Mineral Resources Open-File Report USGS-OF-02-8.

  • Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment, 122, 11–21

    Article  Google Scholar 

  • Jensen, J. R. (2015). Introductory digital image processing: A remote sensing perspective. (4th ed.). Prentice Hall.

    Google Scholar 

  • Johnson, P. R. (2005a). Proterozoic geology of western Saudi Arabia, west-central sheet: Amended May 2005: Saudi Geological Survey Report SGS-OF-2005-6.

  • Johnson, P. R. (2005b). Proterozoic geology of western Saudi Arabia, southern sheet, Amended May 2005: Saudi Geological Survey Report SGS-OF-2005-4

  • Johnson, P. R. (2006). Explanatory notes to the map of Proterozoic geology of western Saudi Arabia, technical report SGS-Tr-2006-4.

  • Koike, K., Nagano, S., & Kawaba, K. (1998). Constraction and analysis of interpreted fracture planes through combination of satellite-image derived lineaments and digital elevation model data. Computers and Geosciences, 24(6), 573–583

    Article  Google Scholar 

  • Kusky, T., & Ramadan, T. (2002). Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: An integrated field, Landsat TM, and SIR-C/X SAR approach. Journal of African Earth Sciences, 35, 107–121

    Article  Google Scholar 

  • Leech, D. P., Treloar, P. J., Lucas, N. S., & Grocott, J. (2003). Landsat TM analysis of fracture patterns: A case study from the Coastal Cordillera of northern Chile. International Journal of Remote Sensing, 24(19), 3709–3726

    Article  Google Scholar 

  • Lillesand, T., Kiefer, R. W., & Chipman, J. (2012). Remote Sensing and Image Interpretation. (6th ed., p. 257). Wiley.

    Google Scholar 

  • Mohamed, F. S., & Safaa, M. H. (2012). Application of Remote Sensing in lithological discrimination and geological mapping of Precambrian basement rocks in the Eastern Desert of Egypt. In: He 33rd Asian Conference on Remote Sensing.

  • Mostafa, M. E., & Bıshta, A. Z. (2004). Significiance of lineament patterns in rock unit classification and designation: A pilot study on the Gharib-Dara area, northern Estern Desert. Egypt. International Journal of Remote Sensing, 26(7), 1463–1475

    Article  Google Scholar 

  • Nama, E. E. (2004). Lineament detection on Mount Cameroon during the 1999 volcanic eruptions using Landsat ETM. International Journal of Remote Sensing, 25(3), 501–510

    Article  Google Scholar 

  • O’Leary, D. W., Friedman, J. D., & Pohn, H. A. (1976). Lineaments, linear, lineation: some proposed new standards for old terms. Bulletin Geological Society of America, 87, 1463–1469

    Article  Google Scholar 

  • PCI, Geomatica-9. (2004). Version 9.1, Richmond Hill, Ontario, Canada.

  • Richards, J. A. (1995). Remote sensing, digital image processing, an introduction. Springer-Verlag.

    Google Scholar 

  • Sabins, F. F. (1999). Remote sensing: principles and interpretaion. WH freeman.

    Google Scholar 

  • Sadek, M. F., El-Kalioubi, B. A., Ali-Bik, M. W., El Hefnawi, M. A., & Elnazer, A. A. (2020). Utilizing Landsat-8 and ASTER data in geologic mapping of hyper-arid mountainous region: case of Gabal Batoga area, South Eastern Desert of Egypt. Environment and Earth Science, 79(5), 1–14

    Article  Google Scholar 

  • Syed, A. A., & Umair, A. (2015). Litho-Structural mapping of Sind catchment (Kashmir basin), N-W Himalaya, using Remote Sensing and GIS Techniques. International Journal of Science and Research, 4, 1325–1330

    Google Scholar 

  • Sonbul, A. R., El-Shafei, M. K., & Bishta, A. Z. (2016). Using remote sensing techniques andfield-based structural analysis to explore new gold and associated mineral sites around Al-Hajar mine, Asir terrane, Arabian Shield. Journal of African Earth Sciences, 117, 285–302

    Article  Google Scholar 

  • Stefouli, M., Angellopoulos, A., Perantonis, S., Vassilas, N., Ambazis, N. & Charou, E. (1996). Integrated analysis and use of remotely sensed data for the seismic risk assessment of the southwest Peloponessus Greece. In First Congress of the Balkan Geophysical Society, 23–27 September, Athens, Greece.

  • Süzen, M. L., & Toprak, V. (1998). Filtering of satellite images in geological lineament analyses: An application to a fault zone in Central Turkey. International Journal of Remote Sensing, 19(6), 1101–1114

    Article  Google Scholar 

  • Sultan, M., Arvidson, R. E., & Sturchio, N. C. (1986). Mapping of serpentinites in the Eastern Desert of Egypt by using Landsat Thematic Mapper data. Geology, 14, 995–999

    Article  Google Scholar 

  • Sultan, M., Arvidson, R. E., Sturchio, N. C., & Guinness, E. A. (1987). Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt. Geologicl Society of America Bulletin, 99, 748–762

    Article  Google Scholar 

  • Vanhellemont, Q., & Ruddick, K. (2014). Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment, 145, 105–115

    Article  Google Scholar 

  • Vassilas, N., Perantonis, S., Charou, E., Tsenoglou T., Stefouli, M., & Varoufakis, S. (2002). Delineation of lineaments from satellite data based on efficient neural network and pattern recognition techniques. In 2nd Hellenic Conference on AI, SETN-2002, 11–12 April 2002, Thessaloniki, Greece, Proceedings, Companion Volume (pp. 355–366).

  • Zakir, F. (1972). Geology of the Ablah area, southern Hijaz Quadrangle, Kingdom of Saudi Arabia. M. Sc Thesis, South Dakota School of Mines and Technology, Rapid City, South Dakota.

  • Zeinelabdein, K. A., & El Nadi, A. H. (2014). The use of Landsat 8 OLI image for the delineation of gossanic ridges in the Red Sea Hills of NE Sudan. American Journal of Earth Science, 1(3), 62–67

    Google Scholar 

  • Zoheir, B. A., & Emam, A. (2012). Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert, Egypt. Journal of African Earth Science, 66, 22–34

    Article  Google Scholar 

  • Ziab, A. M., & Ramsay, C. R. (1986). Geologic Map of the Turabah quadrangle, sheet 21E, Kingdom of Saudi Arabia: Saudi Arabian Deputy Ministry for Mineral Resources Geologic Map GM 93, scale 1:250,000.

Download references

Acknowledgments

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under Grant No. (145-732-D1435). The authors, therefore, acknowledge with thanks DSR technical and financial support. The editor and two anonymous reviewers are thanked for their constructive comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Zein Bishta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishta, A.Z., Sonbul, A.R. Rock Unit Discriminations Using Image Processing Technique of Ablah Area, Arabian shield, Saudi Arabia. J Indian Soc Remote Sens 49, 1965–1984 (2021). https://doi.org/10.1007/s12524-021-01370-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01370-1

Keywords

Navigation