Skip to main content
Log in

Resolving Biases in DEM Differencing for Estimation of Change in Elevation of Glacier Surfaces Using Cartosat-I Stereo Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Understanding the impact of climatic variations on Himalayan-Karakoram glaciers has now become a necessity for planning water resources of Indus-Ganga–Brahmaputra basins. One of the most important parameters to assess this is the mass balance of glaciers. Besides ground-based studies of mass balance, differencing of Digital Elevation Models (DEMs) is now commonly employed for estimating the long-term changes for this purpose. Before applying this approach, it is necessary to evaluate the accuracy of elevation changes of glacier surfaces with respect to terrain parameters and the DEMs used. This study demonstrates the factors governing DEM differencing using an example of four glaciers of Zanskar region by comparing DEMs extracted from Cartosat-1 stereo data of ablation season of the years 2005 and 2015. A strong relation has been observed between slope of the terrain and elevation changes between the two DEMs on non-glaciated stable terrain (R2 = 0.8144). The regression equation thus developed has been used to correct elevation changes on glacier surface. Lowering of ablation zone of the four sample glaciers over a period of ten years has been of the order of 3.92, 11.17, 4.99 and 4.39 m. The results obtained by using Cartosat-I DEMs have also been validated using ASTER DEMs of similar time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali, I., Shukla, A., & Qadir, J. (2014). Monitoring glacial parameters in parts of Zanskar Basin. Jammu and Kashmir. https://doi.org/10.1007/978-3-319-18663-4_138.

    Article  Google Scholar 

  • Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A. L., Favier, V., Mandal, A., et al. (2014). Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. The Cryosphere, 8(6), 2195–2217. https://doi.org/10.5194/tc-8-2195-2014.

    Article  Google Scholar 

  • Bahuguna, I. M., & Kulkarni, A. V. (2005). Application of digital elevation model and ortho images derived from IRS-1C stereo data in monitoring variations in glacial dimensions. Journal of Indian Society of Remote Sensing, 33(1), 107–112.

    Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V., & Nayak, S. R. (2004). DEM from IRS 1C PAN stereo coverages over Himalayan Glaciated Region–Accuracy and its utility. International Journal of Remote Sensing, 25(19), 4029–4041. https://doi.org/10.1080/01431160310001652376.

    Article  Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V., & Nayak, S. R. (2008). Impact of slope on DEM extracted from IRS 1C PAN stereo images covering Himalayan glaciated regions: A few case studies. International Journal of Geoinformatics, 4(2), 21–28.

    Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V., Nayak, S. R., Rathore, B. P., Negi, H. S., & Mathur, P. (2007). Himalayan glacier retreat using IRS 1C PAN stereo data. International Journal of Remote Sensing, 28(2), 437–442. https://doi.org/10.1080/01431160500486674.

    Article  Google Scholar 

  • Benker, S. C., Langford, R. P., & Pavlis, T. L. (2011). Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA. Geocarto International. https://doi.org/10.1080/10106049.2011.568125.

    Article  Google Scholar 

  • Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., & Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment., 5, 10. https://doi.org/10.1016/j.rse.2006.11.017.

    Article  Google Scholar 

  • Bhushan, S., Syed, T. H., Arendt, A. A., Kulkarni, A. V., & Sinha, D. (2018). Assessing controls on mass budget and surface velocity variations of glaciers in Western Himalayas. Scientific Reports, 8, 8885. https://doi.org/10.1038/s41598-018-27014-y.

    Article  Google Scholar 

  • Bolch, T., Buchroithner, M., Pieczonka, T., & Kunert, A. (2008). Planimetric and volumetric glacier changes in The Khumbu Himal, Nepal, since 1962 using corona, landsat TM and ASTER data. Journal of Glaciology, 54, 592–600. https://doi.org/10.3189/002214308786570782.

    Article  Google Scholar 

  • Bolch, T., Pieczonka, T., & Benn, D. I. (2011). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5, 349–358.

    Google Scholar 

  • Braun, M. H., Malz, P., Sommer, C., Farías-Barahona, D., Sauter, T., Casassa, G., et al. (2019). Constraining glacier elevation and mass changes in South America. Nature Climate Change. https://doi.org/10.1038/s41558-018-0375-7.

    Article  Google Scholar 

  • Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers. United State: Elsevier.

    Google Scholar 

  • Dobhal, D. P., Mehta, M., & Srivastava, D. (2013). Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India. Journal of Glaciology, 59(217), 961–971. https://doi.org/10.3189/2013JoG12J180.

    Article  Google Scholar 

  • Dobhal, D. P. G., & Thayyen, R. (2004). Recession and morphogeometrical changes of Dokriani glacier (1962–1995), Garhwal Himalaya, India. Current Science, 85, 692–696.

    Google Scholar 

  • Dong, P., Wang, C., & Ding, J. (2013). Estimating glacier volume loss using remotely sensed images, digital elevation data, and GIS modelling. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2013.853893.

    Article  Google Scholar 

  • Ganas, A., & Athanassiou, E. (2000). A comparative study on the production of satellite orthoimagery for geological remote sensing. Geocarto International, 15, 51–59. https://doi.org/10.1080/10106049908542153.

    Article  Google Scholar 

  • Gardelle, J., Berthier, E., & Arnaud, Y. (2012). Slight mass gain of Karakoram glaciers in the early 21st century. Nature Geoscience, 5, 322–325. https://doi.org/10.1038/NGEO1450.

    Article  Google Scholar 

  • Gardelle, J., Berthier, E., Arnaud, Y., & Kääb, A. (2013). Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya During 1999–2011. The Cryosphere, 7, 1263–1286. https://doi.org/10.5194/Tc-7-1263-2013.

    Article  Google Scholar 

  • Gong, J., Li, Z., Zhu, Q., & Zhou, Y. (2000). Effects of various factors on the accuracy of DEMs: An intensive experimental investigation. Photogrammetric Engineering and Remote Sensing, 66(9), 1113–1117.

    Google Scholar 

  • Gopalakrishna, B., Iyer, K. V., Goswami, A., Alurkar, M., Rana, Y. P., Srivastava, P. K., et al. (1998). Approach for generation of digital elevation models (DEM) and orthoimages from IRS-1C stereo data (pp. 164–171). XXXII(I): International Archives of Photogrammetry and Remote Sensing.

    Google Scholar 

  • Haeberli, W., & Hoelzle, M. (1995). Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Annals of Glaciology, 21, 206–212. https://doi.org/10.3189/S0260305500015834.

    Article  Google Scholar 

  • Hoaglin, D. C., Iglewicz, B., & Tukey, J. W. (1986). Performance of some resistant rules for outlier labeling. Journal of the American Statistical Association, 81(396), 991–999. https://doi.org/10.1080/01621459.1986.10478363.

    Article  Google Scholar 

  • Hock, R., G. Rasul, C. Adler, B. Cáceres, S. Gruber, Y. Hirabayashi, M. Jackson, A. Kääb, S. Kang, S. Kutuzov, A. Milner, U. Molau, S. Morin, B. Orlove, & H. Steltzer. (2019). High mountain areas. In H. -O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. M. Weyer (eds.) IPCC special report on the ocean and cryosphere in a changing climate. In press.

  • Hubbard, A., Willis, I., Sharp, M., Mair, D., Nienow, P., Hubbard, B., et al. (2000). Glacier mass balance determination by remote sensing and high-resolution modelling. Journal of Glaciology, 46(154), 69.

    Google Scholar 

  • Huss, M., & Hock, R. (2018). Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8(2), 135–140.

    Google Scholar 

  • Kääb, A., Nuth, C., Trencher, D., & Berthier, E. (2014). Brief communication: Contending estimates of early 21st century glacier mass balance over the Pamir-Karakoram-Himalaya. The Cryosphere Discussions., 8, 5857–5874.

    Google Scholar 

  • Kannan, V. I., Krishna, B. G., & Srivastava, P. K. (2008). Generation of digital elevation model and orthoimage for collaborative mapping by processing cartosat-1 basic stereo-pair data using SAPHIRE-C. Indian Cartographer, 28, 163–167.

    Google Scholar 

  • Kulkarni, A. V. (1992). Mass balance of Himalayan glaciers using AAR and ELA methods. Journal of Glaciology, 38(128), 119.

    Google Scholar 

  • Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., & Sood, R. K. (2007). Glacial retreat in Himalayas using Indian remote sensing satellite data. Current Science, 92(1), 69–74.

    Google Scholar 

  • Kulkarni, A. V., Rathore, B. P., Singh, S. K., & Bahuguna, I. M. (2011). Understanding changes in the Himalayan cryosphere using remote sensing techniques. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2010.517802.

    Article  Google Scholar 

  • Kumar, V. G., Kulkarni, A. V., Gupta, A. K., & Sharma, P. (2017). Mass balance estimation using geodetic method for glaciers in Baspa basin, Western Himalaya. Current Science, 113(3), 486–487.

    Article  Google Scholar 

  • Mandal, A., Ramanathan, A., Azam, M., Angchuk, T., Soheb, M., Kumar, N., et al. (2020). Understanding the interrelationships among mass balance, meteorology, discharge and surface velocity on Chhota Shigri Glacier over 2002–2019 using in situ measurements. Journal of Glaciology. https://doi.org/10.1017/jog.2020.42.

    Article  Google Scholar 

  • Marzeion, B., Cogley, J. G., Richter, K., & Parkes, D. (2014). Attribution of global glacier mass loss to anthropogenic and natural causes. Science, 345, 919–921.

    Article  Google Scholar 

  • Maurer, J. M., Schaefer, J. M., Rupper, S., & Corley, A. (2019). Acceleration of ice loss across the Himalayas over the past 40 years. Science Advances. https://doi.org/10.1126/sciadv.aav7266.

    Article  Google Scholar 

  • Mitra, R., Gopalakrishna, B., Alurkar, M., Trivedi, S. P., Rana, Y. P., & Srivastava, P. K. (1994). Methodology for generation and evaluation of orthoimage for IRS 1C stereo data (pp. 126–134). XIV: Indian Cartographer.

    Google Scholar 

  • Moore, P. L., Nelson, L. I., & Groth, T. M. D. (2019). Debris properties and mass-balance impacts on adjacent debris-covered glaciers, Mount Rainier, USA. Arctic, Antarctic, and Alpine Research. https://doi.org/10.1080/15230430.2019.1582269.

    Article  Google Scholar 

  • Mukul, M., Srivastava, V., Jade, S., & Mukul, M. (2017). Uncertainties in the shuttle radar topography mission (SRTM) heights: Insights from the Indian Himalaya and Peninsula. Scientific Reports, 7, 41672. https://doi.org/10.1038/srep41672.

    Article  Google Scholar 

  • Nikolakopoulos, K. G., Kamaratakis, E. K., & Chrysoulakis, N. (2006). SRTM vs ASTER elevation products. Comparison for two regions in, Crete, Greece. International Journal of Remote Sensing, 27(21), 4819–4838.

    Google Scholar 

  • Nuth, C., & Kääb, A. (2011). Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5, 271–290. https://doi.org/10.5194/tc-5-271-2011.

    Article  Google Scholar 

  • Oerlemans, J. (2001). Glaciers and climate change. AA Balkema Publishers.

  • Potere, D. (2008). Horizontal positional accuracy of google earth’s high- resolution imagery archive. Sensors, 8, 7973–7981. https://doi.org/10.3390/s8127973.

    Article  Google Scholar 

  • Pratap, B., Dobhal, D. P., Bhambri, R., Mehta, M., & Tewari, V. C. (2015). Four decades of glacier mass balance observations in the Indian, Himalaya. Regional Environmental Change. https://doi.org/10.1007/s10113-015-0791-4.

    Article  Google Scholar 

  • Ren, S., Menenti, M., Jia, L., Zhang, J., Zhang, J., & Li, X. (2020). Glacier mass balance in the Nyainqentanglha Mountains between 2000 and 2017 Retrieved from ZiYuan-3 Stereo Images and the SRTM DEM. Remote Sensing, 12, 864. https://doi.org/10.3390/rs12050864.

    Article  Google Scholar 

  • Singh, N., Singhal, M., Chhikara, S., Karakoti, I., Chauhan, P., & Dobhal, D. P. (2019). Radiation and energy balance dynamics over a rapidly receding glacier in the central Himalaya. International Journal of Climatology. https://doi.org/10.1002/joc.6218.

    Article  Google Scholar 

  • Songwon, S. (2006). A review and comparison of methods for detecting outliers in Univariate Data Sets. Ph.D. thesis, University of Pittsburgh.

  • Srivastava, P. K., Gopalakrishna, B., & Majumdar, K. L. (1997). Cartography and terrain mapping using IRS-1C data. Current Science, 70, 562–567.

    Google Scholar 

  • Toutin, T. (2002). Three-dimensional topographic mapping with ASTER stereo data in rugged topography. IEEE Transactions on Geoscience and Remote Sensing, 40, 2241–2247.

    Google Scholar 

  • Wang, Q., Yi, S., Chang, L., & Sun, W. (2017). Large-scale seasonal changes in glacier thickness across High Mountain Asia. Geophysical Research Letters, 44, 10427–10435. https://doi.org/10.1002/2017GL075300.

    Article  Google Scholar 

  • Yousefzadeh, M., & Mojaradi, B. (2012). Combined rigorous-generic direct orthorectification procedure for IRS-p6 sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 9, 122–132.

    Google Scholar 

  • Zemp, M., Huss, M., Eckert, N., Thibert, E., Paul, F., Nussbaumer, S. U., et al. (2020). Brief communication: Ad hoc estimation of glacier contributions to sea-level rise from the latest glaciological observations. The Cryosphere, 14, 1043–1050. https://doi.org/10.5194/tc-14-1043-2020.

    Article  Google Scholar 

  • Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., et al. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568, 382–386. https://doi.org/10.1038/s41586-019-1071-0.

    Article  Google Scholar 

  • Zhou, Y., Li, Z., Li, J., Zhao, R., & Ding, X. (2019). Geodetic glacier mass balance (1975-1999) in the central Pamir using the SRTM DEM and KH-9 imagery. Journal of Glaciology, 65(250), 309–320. https://doi.org/10.1017/jog.2019.8.

    Article  Google Scholar 

Download references

Acknowledgements

Authors got motivated to do this work because of the foundation laid by several eminent authorities of SAC in the past (Dr R. R. Navalgund, Dr Shailesh Nayak, Dr Ajai and Dr A.V. Kulkarni), moral support given by present authorities in SAC (Sri D. K. Das, Director SAC, Sri N. M. Desai, Associate Director, SAC, Dr Rajkumar, DD EPSA and Dr A.S.Rajawat, GD GHCAG, Sri Debajyoti Dhar, GD SIPG, Sri T P Srinivasan, Head, HRDPD) and technical support given by Dr B Kartikeyan, Outstanding Scientist, SAC and our divisional colleagues (Dr Sushil Kumar Singh, Mr Ritesh Agrawal, Ms Purvee Joshi and Mr Naveen Tripathi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akriti Kulshrestha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulshrestha, A., Bahuguna, I.M., Rathore, B.P. et al. Resolving Biases in DEM Differencing for Estimation of Change in Elevation of Glacier Surfaces Using Cartosat-I Stereo Data. J Indian Soc Remote Sens 48, 1443–1453 (2020). https://doi.org/10.1007/s12524-020-01168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01168-7

Keywords

Navigation