Skip to main content
Log in

Wavelet Based Feature Extraction Techniques of Hyperspectral Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Hyperspectral data have many applications and are being promoted over multi-spectral data to derive useful information about the earth surface. But this hyperspectral data suffers from dimensionality problem. It is one of the challenging tasks to extract the useful information with no or less loss of information. One such technique to extract the useful information is by using wavelet transformations. In this paper, a series of experiments have been presented to investigate the effectiveness of some wavelet based feature extraction of hyperspectral data. Three types of wavelets have been used which are Haar, Daubechies and Coiflets wavelets and the quality of reduced hyperspectral data has been assessed by determining the accuracy of classification of reduced data using Support Vector Machines classifier. The hyperspectral data has been reduced upto four decomposition levels. Among the wavelets used for feature extraction Daubechies wavelet gives consistently better accuracy than that produced from Coiflets wavelet. Also, 2-level decomposition is capable of preserving more useful information from the hyperspectral data. Furthermore, 2-level decomposition takes less time to extract features from the hyperspectral data than 1-level decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blackburn, G. A. (2007). Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation. International Journal of Remote Sensing, 28(12), 2831–2855.

    Article  Google Scholar 

  • Bruce, L. M., Koger, C. H., & Li, J. (2002). Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 40(10), 2331–2338.

    Article  Google Scholar 

  • Bruzzone, L., & Serpico, S. B. (2000). A technique for feature selection in multiclass problems. International Journal of Remote Sensing, 21(3), 549–563.

    Article  Google Scholar 

  • Chen, J., Wang, C., & Wang, R. (2009). Using stacked generalization to combine SVMs in magnitude and shape feature spaces for classification of hyperspectral data. IEEE Transactions on Geoscience Remote Sensing, 47, 2193–2205.

    Article  Google Scholar 

  • Cheriyadat, A., & Bruce, L. M. (2003). Why principal component analysis is not an appropriate feature extraction method for hyperspectral data. IEEE Proceeding of Geoscience and Remote Sensing Symposium, 6, 3420–3422. IGARSS’ 03.

    Google Scholar 

  • Fukuda, S., & Hirosawa, H. (1999). A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing, 37, 2282–2286.

    Article  Google Scholar 

  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749.

    Article  Google Scholar 

  • Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1), 55–63.

    Article  Google Scholar 

  • Hyviirinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: Wiley.

    Book  Google Scholar 

  • Ifarraguerri, A., & Chang, C.-I. (2000). Unsupervised hyperspectral image analysis with projection pursuit. IEEE Transactions on Geoscience and Remote Sensing, 38, 2529–2538.

    Article  Google Scholar 

  • Jain, A., & Zongker, D. (1997). Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2), 153–158.

    Article  Google Scholar 

  • Jensen, S. K., & Walts, F. A. (1997). Principal component analysis and canonical analysis in remote sensing. Proceedings of American Society of Photogrammetry, 45th Annual Meeting, 337–348.

  • Jia, X., & Richards, J. A. (1999). Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Transactions on Geoscience and Remote Sensing, 37, 538–542.

    Article  Google Scholar 

  • Kaewpijit, S., Moigne, J. L., & El-Ghazawi, T. (2003). Automatic reduction of hyperspectral imagery. Compution, 41(4), 863–871.

    Google Scholar 

  • Lee, H. K., Kim, S. W., Kim, K. S., & Choi, S. D. (1994). Image compression based on wavelet transform for remote sensing. Proceedings of SPIE, 2318, 204–214.

    Article  Google Scholar 

  • Liu, H., & Motoda, H. (1998). Feature extraction, construction and selection: A data mining perspective. Norwell: Kluwer.

    Book  Google Scholar 

  • Mathur, A., Bruce, L. M., & Byrd, J. (2002). Discrimination of Sutly Different Vegetation Species via Hyperspectral Data. Proceedings of IEEE International Geoscience and Remote Sensing Symposium and the 24th Canadian Symposium on Remote Sensing, Toronto, Canada, 2, 805–807.

  • Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790.

    Article  Google Scholar 

  • Núñez, J., Otazu, X., Fors, O., Prades, A., Palá, V., & Arbiol, R. (1999). Multiresolution-based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 37, 1204–1211.

    Article  Google Scholar 

  • Pittner, S., & Kamarthi, S. V. (1999). Feature extraction from wavelet coefficients for pattern recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 83–88.

    Article  Google Scholar 

  • Robila, S. A., Haaland, P., Achalakul, T., & Taylor, S. (2000). Exploring independent component analysis for remote sensing. Proceedings of the Workshop on Multi/Hyperspectral Sensors, Measurements, Modeling and Simulation, Redstone Arsenal, Alabama, U.S. Army Aviation and Missile Command, CD.

  • Serpico, S. B., D’Inca, M., Melgani, F., & Moser, G. (2003). A comparison of feature reduction techniques for classification of hyperspectral remote sensing data. Proceedings of SPIE Image and Signal Processing Remote Sensing VIII, 4885, 347–358.

    Article  Google Scholar 

  • Singh, A., Dutta, R., Stein, A., & Bhagat, R. M. (2012). A wavelet-based approach for monitoring plantation crops (tea: Camellia sinensis) in North East India. International Journal of Remote Sensing, 33(16), 4982–5008.

    Article  Google Scholar 

  • Tsai, F., Lin, E. K., & Yoshino, K. (2007). Spectrally segmented principal component analysis of hyperspectral imagery for mapping invasive plant species. International Journal of Remote Sensing, 28(5), 1023–1039.

    Article  Google Scholar 

  • Vapnik, V. N., & Chervonenkis, A. J. (1974). Theory of pattern recognition. Moscow: Nauka.

    Google Scholar 

  • Walker, J. S. (2008). A Primer on wavelets and their scientific applications, 2nd edition, Chapman & Hall/CRC, Taylor & Francis Group.

  • Wang, C., Chen, J., & Wang, R. (2012). Improving hyperspectral data classification by fusing band and wavelet features. International Journal of Remote Sensing, 33(10), 3268–3285.

    Article  Google Scholar 

  • Zortea, M., & Haertel, V. (2004). Experiments on feature extraction in remotely sensed hyperspectral image data (pp. 964–967). Anchorage: Proceedings of IGARSS.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Prabhu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, N., Arora, M.K. & Balasubramanian, R. Wavelet Based Feature Extraction Techniques of Hyperspectral Data. J Indian Soc Remote Sens 44, 373–384 (2016). https://doi.org/10.1007/s12524-015-0506-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-015-0506-9

Keywords

Navigation