Skip to main content
Log in

Dimensionality Reduction Using Band Correlation and Variance Measure from Discrete Wavelet Transformed Hyperspectral Imagery

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

Contiguous narrow bands of hyperspectral images greatly increase computational complexity. Redundancy reduction is therefore necessary. Here, a minimum redundancy and maximum variance based unsupervised band selection methodology is proposed. Discrete wavelet transformation is applied on the data to reduce spatial redundancy without much effecting the overall band correlations. This in turn made the process more time efficient and noise resilient. Highly correlated bands are considered similar, and one with higher variance is accepted as being more discriminating. Finally, classification is performed with the selected bands and overall accuracy (OA) is calculated. The proposed method is compared with four other existing state-of-the-art methods in the similar field in terms of OA and execution time for evaluating the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. An D et al (2016) Hyperspectral field estimation and remote-sensing inversion of salt content in coastal saline soils of the Yellow River Delta. Int J Remote Sens 37(2):455–470

    Article  Google Scholar 

  2. Deepa P, Thilagavathi K (2015) Feature extraction of hyperspectral image using principal component analysis and folded-principal component analysis. In: 2nd International conference on electronics and communication systems (ICECS), IEEE, pp 656–660

  3. Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach, 1st edn. Prentice-Hall International, New Delhi

    Google Scholar 

  4. Ding L, Tang P, Li H (2013) Isomap-based subspace analysis for the classification of hyperspectral data. In: IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 429–432

  5. Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley, New York

    Google Scholar 

  6. Feng J, Jiao L, Liu F, Sun T, Zhang X (2016) Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images. Pattern Recogn 51:295–309

    Article  Google Scholar 

  7. Feng J, Jiao L, Sun T, Liu H, Zhang X (2016) Multiple kernel learning based on discriminative kernel clustering for hyperspectral band selection. IEEE Trans Geosci Remote Sens 54(11):6516–6530

    Article  Google Scholar 

  8. Fukunaga K (2013) Introduction to statistical pattern recognition. Elsevier, Amsterdam

    Google Scholar 

  9. Ghorbanian A, Mohammadzadeh A (2018) An unsupervised feature extraction method based on band correlation clustering for hyperspectral image classification using limited training samples. Remote Sens Lett 9(10):982–991. https://doi.org/10.1080/2150704X.2018.1500723

    Article  Google Scholar 

  10. Gonzalez RC, Woods R (2007) Digital image processing. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  11. Götze C, Beyer F, Gläßer C (2016) Pioneer vegetation as an indicator of the geochemical parameters in abandoned mine sites using hyperspectral airborne data. Environ Earth Sci 75:613

    Article  Google Scholar 

  12. Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63. https://doi.org/10.1109/TIT.1968.1054102

    Article  Google Scholar 

  13. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  14. Jia S, Tang G, Zhu J, Li Q (2016) A novel ranking-based clustering approach for hyperspectral band selection. IEEE Trans Geosci Remote Sens 54(1):88–102

    Article  Google Scholar 

  15. Kim B, Landgrebe DA (1991) Hierarchical classifier design in highdimensional numerous class cases. IEEE Trans Geosci Remote Sens 29(4):518–528

    Article  Google Scholar 

  16. Launeau P et al (2017) Airborne hyperspectral mapping of trees in an urban area. Int J Remote Sens 38(5):1277–1311

    Article  Google Scholar 

  17. Li W, Prasad S, Fowler JE, Bruce LM (2012) Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans Geosci Remote Sens 50(4):1185–1198

    Article  Google Scholar 

  18. Paul A, Bhattacharya S, Dutta D, Sharma JR, Dadhwal VK (2015) Band selection in hyperspectral imagery using spatial cluster mean and genetic algorithms. GISci Remote Sens 52(6):644–661. https://doi.org/10.1080/15481603.2015.1075180

    Article  Google Scholar 

  19. Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J Mach Learn Res 8:1027–1061

    Google Scholar 

  20. Sun K, Geng X, Ji L (2015) Exemplar component analysis: a fast band selection method for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(5):998–1002

    Article  Google Scholar 

  21. Sun K, Geng X, Ji L, Lu X (2014) A new band selection method for hyperspectral image based on data quality. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2697–2703

    Article  Google Scholar 

  22. Sun Y, Wang S, Liu Q, Hang R, Liu G (2017) Hypergraph embedding for spatial-spectral joint feature extraction in hyperspectral images. Remote Sens 9(5):506. https://doi.org/10.3390/rs9050506

    Article  Google Scholar 

  23. Upadhyay V, Kumar A (2018) Hyperspectral remote sensing of forests: technological advancements, opportunities and challenges. Earth Sci Inf 11:487. https://doi.org/10.1007/s12145-018-0345-7

    Article  Google Scholar 

  24. Wang C, Gong M, Zhang M, Chan Y (2015) Unsupervised hyperspectral image band selection via column subset selection. IEEE Geosci Remote Sens Lett 12(7):1411–1415

    Article  Google Scholar 

  25. Wang Q, Lin J, Yuan Y (2016) Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans Neural Netw Learn Syst 27(6):1279–1289

    Article  Google Scholar 

  26. Yang H, Du Q, Su H, Sheng Y (2011) An efficient method for supervised hyperspectral band selection. IEEE Geosci Remote Sens Lett 8(1):138–142

    Article  Google Scholar 

  27. Yuan H, Tang YY (2015) Learning with hypergraph for hyperspectral image feature extraction. Geosci Remote Sens Lett IEEE 12(8):1695–1699

    Article  Google Scholar 

  28. Yuan Y, Lin J, Wang Q (2016) Dual-clustering-based hyperspectral band selection by contextual analysis. IEEE Trans Geosci Remote Sens 54(3):1431–1445

    Article  Google Scholar 

  29. Zarco-Tejada P, González-Dugo M, Fereres E (2016) Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sens Environ 179:89–103

    Article  Google Scholar 

  30. Zhang W, Li X, Zhao L (2018) A fast hyperspectral feature selection method based on band correlation analysis. IEEE Geosci Remote Sens Lett 15(11):1750–1754

    Article  Google Scholar 

  31. Zhao W, Du S (2016) Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554. https://doi.org/10.1109/TGRS.2016.2543748

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arati Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A., Chaki, N. Dimensionality Reduction Using Band Correlation and Variance Measure from Discrete Wavelet Transformed Hyperspectral Imagery. Ann. Data. Sci. 8, 261–274 (2021). https://doi.org/10.1007/s40745-019-00210-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-019-00210-x

Keywords

Navigation