Skip to main content
Log in

A three-pronged analysis confirms the association of the serotoninergic system with attention deficit hyperactivity disorder

  • Original Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

The serotonin transporter (SERT), encoded by the solute carrier family 6 number 4 (SLC6A4) gene, controls serotonin (5-HT) availability and is essential for the regulation of behavioral traits. Two SLC6A4 genetic variants, 5-HTTLPR and STin2, were widely investigated in patients with various neurobehavioral disorders, including attention deficit hyperactivity disorder (ADHD).

Methods

We analyzed the association of the 5-HTTLPR (L/S) and STin2 (10/12) variants, plasma 5-HT, and 5-hydroxyindole acetic acid (5-HIAA), as well as SERT messenger RNA (mRNA) with ADHD in the eastern Indian subjects. Nuclear families with ADHD probands (n = 274) and ethnically matched controls (n = 367) were recruited following the Diagnostic and Statistical Manual of Mental Disorders. Behavioral traits, executive function, and intelligence quotient (IQ) of the probands were assessed using the Conner's Parent Rating Scale – Revised, Parental Account of Children’s Symptoms (PACS), Barkley Deficit in Executive Functioning—Child and Adolescent Scale, and Wechsler Intelligence Scale for Children-III, respectively. After obtaining informed written consent, peripheral blood was collected to analyze genetic variants, plasma 5-HT, 5-HIAA, and SERT mRNA expression.

Results

ADHD probands showed a higher frequency of the 5-HTTLPR “L” allele and “L/L” genotype (P < 0.05), lower 5-HIAA level, and higher SERT mRNA expression. Scores for behavioral problems and hyperactivity were higher in the presence of the “S” allele and “S/S” genotype, while executive deficit was higher in the presence of the “L” allele. IQ score was lower in the presence of the STin2 “12” allele and L-12 haplotype.

Conclusion

Data obtained indicate a significant association of the serotoninergic system with ADHD, warranting further in-depth investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data generated for the study are presented in tabular format as Tables and Additional files. Further details on data will be available from the corresponding author on reasonable request.

References

  1. Thomas R, Sanders S, Doust J, Beller E, Glasziou P. Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics. 2015;135:e994-1001.

    Article  PubMed  Google Scholar 

  2. Song P, Zha M, Yang Q, Zhang Y, Li X, Rudan I. The prevalence of adult attention-deficit hyperactivity disorder: a global systematic review and meta-analysis. J Glob Health. 2021;11:04009.

    Article  PubMed  PubMed Central  Google Scholar 

  3. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM). 5th ed. Washington DC: American Psychiatric Association; 2013.

  4. Gnanavel S, Sharma P, Kaushal P, Hussain S. Attention deficit hyperactivity disorder and comorbidity: a review of literature. World J Clin Cases. 2019;17:2420–6.

    Article  Google Scholar 

  5. Yadav SK, Bhat AA, Hashem S, Nisar S, Kamal M, Syed N, et al. Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry. 2021;11:349.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Faraone SV, Bonvicini C, Scassellati C. Biomarkers in the diagnosis of ADHD – promising directions. Curr Psychiatry Rep. 2014;16:497.

    Article  PubMed  Google Scholar 

  7. Banerjee E, Sinha S, Chatterjee A, Gangopadhyay PK, Singh M, Nandagopal K. A family-based study of Indian subjects from Kolkata reveals allelic association of the serotonin transporter intron-2 (STin2) polymorphism and attention-deficit-hyperactivity disorder (ADHD). Am J Med Genet B Neuropsychiatr Genet. 2006;141B:361–6.

    Article  CAS  PubMed  Google Scholar 

  8. Banerjee E, Nandagopal K. Does serotonin deficit mediate susceptibility to ADHD? Neurochem Int. 2015;82:52–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hanswijk SI, Rooij DV, Oosterlaan J, Luman M, Hoekstra PJ, Hartman CA, et al. Maternal serotonin transporter genotype and offsprings’ clinical and cognitive measures of ADHD and ASD. Prog Neuropsychopharmacol Biol Psychiatry. 2021;110:110354.

    Article  CAS  PubMed  Google Scholar 

  10. Landaas ET, Johansson S, Jacobsen KK, Ribasés M, Bosch R, Sánchez-Mora C, et al. An international multicenter association study of the serotonin transporter gene in persistent ADHD. Genes Brain Behav. 2010;9:449–58.

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Wang Y, Zhou R, Zhang H, Yang L, Wang B, et al. Association between polymorphisms in serotonin transporter gene and attention deficit hyperactivity disorder in Chinese Han subjects. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:14–9.

    Article  CAS  PubMed  Google Scholar 

  12. Oades RD, Lasky-Su J, Christiansen H, Faraone SV, Sonuga-Barke EJ, Banaschewski T, et al. The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): findings from a family-based association test (FBAT) analysis. Behav Brain Funct. 2008;4:48.

    Article  PubMed  PubMed Central  Google Scholar 

  13. van der Meer D, Hartman CA, Richards J, Bralten JB, Franke B, Oosterlaan J, et al. The serotonin transporter gene polymorphism SERTLPR moderates the effects of stress on attention-deficit/hyperactivity disorder. J Child Psychol Psychiatry. 2014;55:1363–71.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Wang T, Du Y, Hu D, Zhang Y, Li H, et al. Polygenic risk of genes involved in the catecholamine and serotonin pathways for ADHD in children. Neurosci Lett. 2021;760:136086.

    Article  CAS  PubMed  Google Scholar 

  15. Lee YH, Song GG. Meta-analysis of case-control and family-based associations between the 5-HTTLPR L/S polymorphism and susceptibility to ADHD. J Atten Disord. 2018;22:901–8.

    Article  PubMed  Google Scholar 

  16. Berger M, Gray JA, Roth BL. The expanded biology of Serotonin. Annu Rev Med. 2009;60:355–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thakur GA, Grizenko N, Sengupta S, Schmitz N, Joober R. The 5-HTTLPR polymorphism of the serotonin transporter gene and short term behavioral response to methylphenidate in children with ADHD. BMC Psychiatry. 2010;10:50.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kõks G, Prans E, Tran HDT, Ngo NBT, Hoang LNN, Tran HMT, et al. Genetic interaction between two VNTRs in the SLC6A4 gene regulates nicotine dependence in Vietnamese men. Front Pharmacol. 2018;9:1398.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Haddley K, Bubb VJ, Breen G, Parades-Esquivel UM, Quinn JP. Behavioral genetics of the serotonin transporter. Curr Topics Behav Neurosci. 2012;12:503–5.

    Article  CAS  Google Scholar 

  20. Eisenberg DTA, Hayes MG. Testing the null hypothesis: comments on “culture-gene coevolution of individualism-collectivism and the serotonin transporter gene.” Proc Biol Sci. 2011;278:329–32.

    PubMed  Google Scholar 

  21. Talati A, Guffanti G, Odgerel Z, Ionita-Laza I, Malm H, Sourander A, et al. Genetic variants within the serotonin transporter associated with familial risk for major depression. Psychiatry Res. 2015;228:170–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem. 1996;66:2621–4.

    Article  CAS  PubMed  Google Scholar 

  23. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527–31.

    Article  CAS  PubMed  Google Scholar 

  24. MacKenzie A, Quinn J. A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. Proc Natl Acad Sci USA. 1999;96:15251–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vijayan NN, Iwayama Y, Koshy LV, Natarajan C, Nair C, Allencherry PM, et al. Evidence of association of serotonin transporter gene polymorphisms with schizophrenia in a south Indian population. J Hum Genet. 2009;54:538–42.

    Article  CAS  PubMed  Google Scholar 

  26. D’Souza UM, Powell-Smith G, Haddley K, Powell TR, Bubb VJ, Price T, et al. Allele-specific expression of the serotonin transporter and its transcription factors following lamotrigine treatment in vitro. Am J Med Genet B Neuropsychiat Genet. 2013;162:474–83.

    Article  Google Scholar 

  27. American Psychiatric Association. Diagnostic and statistical manual for mental disorders-IV-text revised (DSM-IV-TR) (4th ed.). Washington DC: American Psychiatric Association; 2000.

  28. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Conners CK, Parker JDA, Sitarenios G, Epstein J. The revised conners’ parent rating scale (CPRS-R): factor structure, reliability, and criterion validity. J Abnormal Child Psychol. 1988;26:257–8.

    Article  Google Scholar 

  30. Das M, Das Bhowmik A, Bhaduri N, Sarkar K, Ghosh P, Sinha S, et al. Role of gene-gene/gene-environment interaction in the etiology of eastern Indian ADHD probands. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:577–87.

    Article  CAS  PubMed  Google Scholar 

  31. Wechsler D. Wechsler intelligence scale for children. 3rd ed. San Antonio, Texas: USA: Manual Psychological Corporation; 1991.

    Google Scholar 

  32. Chen W, Taylor E. Parental Account of Children’s Symptoms (PACS), ADHD Phenotypes and its application to molecular genetic studies. In: Oades RD, editor. Attention-deficit/hyperactivity disorder (AD/HD) and the hyperkinetic syndrome (HKS): Current ideas and ways forward. New York: Nova Science Publishers; 2006. p. 3–20.

    Google Scholar 

  33. Barkley RA. Distinguishing sluggish cognitive tempo from ADHD in children and adolescents: executive functioning, impairment, and comorbidity. J Clin Child Adolesc Psychol. 2013;42:161–3.

    Article  PubMed  Google Scholar 

  34. Dudbridge F. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered. 2008;66:87–8.

    Article  PubMed  Google Scholar 

  35. Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry. 2019;24:562–5.

    Article  CAS  PubMed  Google Scholar 

  36. Maitra S, Chatterjee M, Sinha S, Mukhopadhyay K. Dopaminergic gene analysis indicates influence of inattention but not IQ in executive dysfunction of Indian ADHD probands. J Neurogenet. 2019;33:209–17.

    Article  CAS  PubMed  Google Scholar 

  37. Karmakar A, Goswami R, Saha T, Maitra S, Roychowdhury A, Panda CK, et al. Pilot study indicate role of preferentially transmitted monoamine oxidase gene variants in behavioral problems of male ADHD probands. BMC Med Genet. 2017;18:109.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ghosh P, Maitra S, Saha T, Sinha S, Mukhopadhyay K. Functional genetic polymorphisms in dopaminergic transporters: association with ADHD traits in the Indian probands. Meta Gene. 2017;11:117–22.

    Article  Google Scholar 

  39. Halmoy A, Johansson S, Winge I. Attention-Deficit/hyperactivity disorder symptoms in offspring of mothers with impaired serotonin production. Arch Gen Psychiatry. 2010;67:1033–43.

    Article  PubMed  Google Scholar 

  40. Zoroğlu SS, Erdal ME, Alaşehirli B, Erdal N, Sivasli E, Tutkun H, et al. Significance of serotonin transporter gene 5-HTTLPR and variable number of tandem repeat polymorphism in attention deficit hyperactivity disorder. Neuropsychobiology. 2002;45:176–81.

    Article  PubMed  Google Scholar 

  41. Klasen M, Wolf D, Eisner PD, Eggermann T, Zerres K, Zepf FD, et al. Serotonergic contributions to human brain aggression networks. Front Neurosci. 2019;13:42.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhou K, Dempfle A, Arcos-Burgos M, Bakker SC, Banaschewski T, Biederman J, et al. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1392–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takahashi A, Quadros IM, de Almeida RM, Miczek KA. Behavioral and pharmacogenetics of aggressive behavior. Curr Top Behav Neurosci. 2012;12:73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Olivier B. Serotonin: a never-ending story. Eur J Pharmacol. 2015;753:2–18.

    Article  CAS  PubMed  Google Scholar 

  45. Muller CP, Schumann G, Kornhuber J, Kalininchenko LS. The role of serotonin in alcohol use and abuse. Handb Behav Neurosci. 2020;31:803–27.

    Article  Google Scholar 

  46. Waldman ID. Candidate genes for aggression and antisocial behavior: a meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR. Behav Genet. 2014;44:427–34.

    Article  PubMed  Google Scholar 

  47. Lin PY, Wu YS. Association between serotonin transporter gene polymorphisms and heroin dependence: a meta-analytic study. Neuropsychiatr Dis Treat. 2016;12:3061–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Manor I, Eisenberg J, Tyano S, Sever Y, Cohen H, Ebstein RP, et al. Family-based association study of the serotonin transporter promoter region polymorphism (5-HTTLPR) in attention deficit hyperactivity disorder. Am J Med Genet. 2001;105:91–5.

    Article  CAS  PubMed  Google Scholar 

  49. Seeger G, Schloss P, Schmidt MH. Marker gene polymorphisms in hyperkinetic disorder–predictors of clinical response to treatment with methylphenidate? Neurosci Lett. 2001;313:45–8.

    Article  CAS  PubMed  Google Scholar 

  50. Curran S, Purcell S, Craig I, Asherson P, Sham P. The serotonin transporter gene as a QTL for ADHD. Am J Med Genet B Neuropsychiatr Genet. 2005;134B:42–7.

    Article  PubMed  Google Scholar 

  51. Volf NV, Kulikov AV, Bortsov CU, Popova NK. Association of verbal and figural creative achievement with polymorphism in the human serotonin transporter gene. Neurosci Lett. 2009;463:154–7.

    Article  CAS  PubMed  Google Scholar 

  52. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci. 2005;8:828–34.

    Article  CAS  PubMed  Google Scholar 

  53. Kent L, Doerry U, Hardy E, Parmar R, Gingell K, Hawi Z, et al. Evidence that variation at the serotonin transporter gene influences susceptibility to attention deficit hyperactivity disorder (ADHD): analysis and pooled analysis. Mol Psychiatry. 2002;7:908–12.

    Article  CAS  PubMed  Google Scholar 

  54. Kim SJ, Badner J, Cheon KA, Kim BN, Yoo HJ, Kim SJ, et al. Family-based association study of the serotonin transporter gene polymorphisms in Korean ADHD trios. Am J Med Genet B Neuropsychiatr Genet. 2005;139B:14–8.

    Article  CAS  PubMed  Google Scholar 

  55. Cook EH Jr, Stein MA, Ellison T, Unis AS, Leventhal BL. Attention deficit hyperactivity disorder and whole-blood serotonin levels: effects of comorbidity. Psychiatry Res. 1995;57:13–20.

    Article  CAS  PubMed  Google Scholar 

  56. Wang LJ, Yu YH, Fu ML, Yeh WT, Hsu JL, Yang YH, et al. Attention deficit-hyperactivity disorder is associated with allergic symptoms and low levels of hemoglobin and serotonin. Sci Rep. 2018;8:10229.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Setiawati Y, Mukono HJ, Wahyuhadi J, Warsiki E, Yuniar S. Is there an effrct of serotonin on attention deficit hyperactivity disorder. Indian J Public Health Res Dev. 2020;11:1745–9.

    Article  Google Scholar 

  58. Ramage JK, Ahmed A, Ardill J, Bax N, Breen DJ, Caplin ME, et al. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut. 2012;61:6–32.

    Article  CAS  PubMed  Google Scholar 

  59. Jayamohananan H, Manoj Kumar MK, TP A. 5-HIAA as a potential biological marker for neurological and psychiatric disorders. Adv Pharm Bull. 2019;9:374–81.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Adaway JE, Dobson R, Walsh J, Cuthbertson DJ, Monaghan PJ, Trainer PJ, et al. Serum and plasma 5-hydroxyindoleacetic acid as an alternative to 24-h urine 5-hydroxyindoleacetic acid measurement. Ann Clin Biochem. 2016;53:554–60.

    Article  CAS  PubMed  Google Scholar 

  61. Tohmola N, Johansson A, Sane T, Renkonen R, Hämäläinen E, Itkonen O. Transient elevation of serum 5-HIAA by dietary serotonin and distribution of 5-HIAA in serum protein fractions. Ann Clin Biochem. 2015;52:428–33.

    Article  CAS  PubMed  Google Scholar 

  62. Karmakar A, Maitra S, Verma D, Chakraborti B, Goswami R, Ghosh P, et al. Potential contribution of monoamine oxidase a gene variants in ADHD and behavioral co-morbidities: scenario in eastern Indian probands. Neurochem Res. 2014;39:843–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the study participants for volunteering in the study. In addition, we are grateful to Dr. Chinmay Saha for his help during the statistical analysis.

Funding

The host institute funded this study.

Author information

Authors and Affiliations

Authors

Contributions

CM: investigation, data curation, formal analysis, writing–original draft. SSH: formal analysis. SSW: investigation. MK: conceptualization, supervision, writing–review and editing. All the authors approved the final manuscript.

Corresponding author

Correspondence to Kanchan Mukhopadhyay.

Ethics declarations

Conflict of interest

No financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Ethical approval

All the procedures involving human participants were performed following the ethical standards of the institutional research committee, which follows the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent for publication

Written informed consent was obtained from the participants/parents/caregivers for the anonymous publication of the study findings.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, M., Saha, S., Sinha, S. et al. A three-pronged analysis confirms the association of the serotoninergic system with attention deficit hyperactivity disorder. World J Pediatr 18, 825–834 (2022). https://doi.org/10.1007/s12519-022-00614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-022-00614-5

Keywords

Navigation