Skip to main content

Advertisement

Log in

Detection of hydrothermal alteration and structural characteristics of Miocene volcanic rocks using remote sensing in the M’sirda region (northwestern Algeria)

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Hydrothermal alteration is the origin of potential mineral deposits. It is the source of different mineralization types and areas of economic interest. Remote sensing techniques are commonly used for identifying and assessing these alterations given their advantages in mineral exploration industry. The Miocene period in western Algeria recorded several volcanic activities resulting from eruptions. The M’sirda massif is the focus of our study. It has exposed potential deposits related to Miocene-age volcanism. M’sirda Massif revealed significant Au–Ag polymetallic mineralization (Pb–Zn-Cu), hosted by andesite subvolcanic rocks, associated with a sequence of altered minerals (Quartz-Kaolinite-Alunite), Adularia-Sericite. To map the altered rocks, geologists use enhanced technologies based on georeferenced remote sensing images. Indeed, detailed and accurate mapping is possible using Landsat-8 OLI/TIRS images. In the present study, a complete hydrothermal alteration study is conducted to map the hydrothermal alteration minerals. The combination of structural geological data and remote sensing results allows the determination of a relationship between mineralization and structures. Therefore, the mineral potential of the M’sirda massifs can be identified. This mapping process is based on digital data. Our study focuses on two aspects: structural and polymetallic mineralization. It has been demonstrated that the structural lineaments represent the fault zones extracted using both filter and density line techniques. A strong correlation is seen between mineralization deposits and high fracture density zones, which are expected to be helpful in delineating higher concentration of hydrothermal deposit potential. In addition, the mapping of alteration zones was successfully classed as evidenced by the statistical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams J B (1975) Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In: Infrared and Raman spectroscopy of lunar and terrestrial minerals (Karr, C., ed.). Academic Press, New York, 91–116. https://doi.org/10.1016/B978-0-12-399950-4.50009-4

  • Abdelsalam M G, Stern R J, Berhane W G (2000) Mapping gossans in arid regions with Landsat TM and SIR-C images: the Beddaho Alteration Zone in northern Eritrea, Journal of African Earth Sciences, 903–916, https://doi.org/10.1016/S0899-5362(00)00059-2

  • Abdelnasser A, Kumral M, Zoheir B, Karaman M, Weihed P (2018) REE geochemical characteristics and satellite-based mapping of hydrothermal alteration in Atud gold deposit. Egypt J African Earth Sci 145:317–330. https://doi.org/10.1016/j.jafrearsci.2018.01.013

    Article  Google Scholar 

  • Adiria Z, Lhissoub R, El Hartia A, Jelloulia A, Mohcine CM (2020) Recent advances in the use of public domain satellite imagery for mineral exploration: a review of Landsat-8 and Sentinel-2 applications. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2020.103332

    Article  Google Scholar 

  • Aissa D E, Marignac C, Boutaleb A (2000) A metallogenesis of the Alpian oblique collision belt in North Eastern Algeria. J Afr Earth Sci Sp Abstract Issue 30, Nb 4A.

  • Ali ASO, Pour AB (2014) Lithological mapping and hydrothermal alteration using Landsat 8 data: a case study in Ariabmining district, Red Sea Hills. Sudan. Int J Basic Appl Sci 3(3):199–208. https://doi.org/10.14419/ijbas.v3i3.2821

    Article  Google Scholar 

  • Agar B, Coulter D (2007) Remote sensing for mineral exploration a decade perspective 1997–2007. In: Milkereit B (ed) Proceedings of Exploration 07: Fifth Decennial International Conference onmineral Exploration, p 109–136.

  • Azizi H, Rsaouli AA, Babaei K (2007) Using SWIR bands from ASTER for discrimination of hydrothermal altered minerals in the Northwest of Iran (SE- Sanandaj City): a key for exploration of copper and gold mineralisation. Res J Appl Sci 2(96):763–768. https://medwelljournals.com/abstract/?doi=rjasci.2007.763.768. Accessed 14 Feb 2023

    Google Scholar 

  • Beane R E (1982) Hydrothermal alteration in silicate rocks, southwestern North America; In: Advances in Geology of the Porphyry Copper Deposits, Southwestern North America: Tucson (ed.) Titley S R, Univ. Ariz. Press, Chapter 6.

  • Bedini E (2011) Mineral mapping in the Kap Simpson complex, central east green land, using hymap and ASTER remote sensing data. Adv Space Res 47:60–73. https://doi.org/10.1016/j.asr.2010.08.021

    Article  Google Scholar 

  • Bellon H, Guardia P, Magné J (1984) Les associations volcaniques du Miocène Supérieur de la région oranaise (Algérie occidentale) Conséquences géodynamiques. Geol Méditerranéenne XI:255–264

    Article  Google Scholar 

  • Benali H (2007) Les minéralisations associées aux roches magmatiques tertiaires du nord de l’Algérie: typologie, pétrologie, cadre géodynamique et implications métallogéniques, p. 195 (PhD thesis), USTHB Algiers.

  • Bendoukha R (2008) Etude dynamique, pétrographique et géochimique du volcanisme alcalin plio- quaternaire de l’Oranie (Algérie nord occidentale). Thèse de doctorat d'état en science de la terre, option: pétrologie structurologie. University of Science and Technology Houari Boumediene, Algiers. P160.

  • Bishop CA, Liu JG, Mason PJ (2011) Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province. China Int J Remote Sens 32(9):2409–2426. https://doi.org/10.1080/01431161003698336

    Article  Google Scholar 

  • Campbell JB (2002) Introduction to remote sensing, 3rd edn. Taylor and Francis, London

    Google Scholar 

  • Carminati E, Lustrino M, Doglioni C (2012) Geodynamic evolution of the central and western Mediterranean: tectonics vs. igneous petrology constraints. Tectonophysics 579:173–192. https://doi.org/10.1016/j.tecto.2012.01.026

    Article  Google Scholar 

  • Chang Q, Jing L, Panahi A (2006) Principal component analysis with optimum order sample correlation coefficient for image enhancement. Int J Rem Sen 27(16):3387–3401. https://doi.org/10.1080/01431160600606882

    Article  Google Scholar 

  • Chauvet A ( 2019) Structural control of mineral deposits. Theory and reality. Minerals 256.

  • Chazot G, Abbassene F, Maury RC, Déverchère J, Bellon H, Ouabadi A, Bosch D (2017) An overview on the origin of post-collisional Miocene magmatism in the Kabylies (northern Algeria): Evidence for crustal stacking, delamination and slab detachment. J Afr Earth Sc 125:27–41. https://doi.org/10.1016/j.jafrearsci.2016.10.005

    Article  Google Scholar 

  • Clarck RN (1999) Chapter 1: Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Rencz AN (ed) Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences. John Wiley and Sons, Inc., New York, USA, pp 3–58

    Google Scholar 

  • Clark R N, Swayze G A, Livo K E, Kokaly R F, Sutley S J, Dalton J B, Gent C A (2003) Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J Geophys Res Planets 108(E12). https://doi.org/10.1029/2002JE001847

  • Corgne S, Magagi R, Yergeau M, Sylla D (2010) An integrated approach to hydrogeological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS. Remote Sens Environ 114:1863–1875. https://doi.org/10.1016/j.rse.2010.03.004

    Article  Google Scholar 

  • Coulon C, Megartsi M, Fourcade S, Maury RC, Bellon H, Louni-Hacini A, Cotten J, Coutelle A, Hermitte D (2002) Post-collisional transition from calcalkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos 62:87–110. https://doi.org/10.1016/S0024-4937(02)00109-3

    Article  Google Scholar 

  • Da Cunha Frutuoso RM (2015) Mapping hydrothermal gold mineralization using Landsat 8 data. A case of study in Chaves license, Portugal

    Google Scholar 

  • Domzig A, Yelles K, Le Roy C, Déverchère J, Bouillin JP, Bracène R, de Lépinay BM, Le Roy P, Calais E, Kherroubi A, Gaullier V, Savoye B, Pauc H (2006) Searching for the Africa-Eurasia Miocene boundary offshore western Algeria (MARADJA’03 cruise). CR Geosci 338:80–91. https://doi.org/10.1016/j.crte.2005.11.009

    Article  Google Scholar 

  • Dubois J (1999) Identification des Linéaments dans les images satellitaires par ajustement et suivi des segments. Project application submitted to school top technology university of Quebec, Canada

    Google Scholar 

  • Ducart DF, Silva AM, Toledo CLB, Assis LMD (2016) Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province. Brazil Braz J Geol 46(3):331–349. https://doi.org/10.1590/2317-4889201620160023

    Article  Google Scholar 

  • Duggen S, Hoernle K, Van den Bogaard P, Garbe-Schonberg D (2005) Postcollisional transition from subduction to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J Petrol 46:1155–1201. https://doi.org/10.1093/petrology/egi013

    Article  Google Scholar 

  • Eisele A, Lau I, Hewson R, Carter D, Wheaton B, Ong C, Kaufmann H (2012) Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes. Remote Sens 4(11):3265–3286. https://doi.org/10.3390/rs4113265

    Article  Google Scholar 

  • El Azzouzi M, Maury RC, Fourcade S, Coulon C, Bellon H, Ouabadi A, Semroud B, Megartsi M, Cotten J, Belanteur O, Louni-Hacini A, Coutelle A, Piqué A, Capdevila R, Hernandez J, Rehault JP (2003) Evolution spatial et temporelle du magmatisme néogène de la marge septentrionale du Maghreb: manifestation d’un détachement lithosphérique. Service Géologique Du Maroc 447:107–116

    Google Scholar 

  • El Desouky HA, Muchez P, Dewaele S, Boutwood A, Tyler R (2008) Postorogenic origin of the stratiform Cumineralization at Lufukwe, Lufilian Foreland, Democratic Republic of Congo. Econ Geol 103:555–582. https://doi.org/10.2113/gsecongeo.103.3.555

    Article  Google Scholar 

  • Fekraoui A, Abouriche A (1999) Ressources Géothermiques du Nord de l’Algérie- Eléments de l’Atlas Géothermique. Rev Energ Renouv: 159–162.

  • Funedda A, Naitza S, Buttau C, Cocco F, Dini A (2018) Structural controls of ore mineralization in a polydeformed basement: field examples from the Variscan Baccu Locci Shear Zone (SE Sardinia, Italy). Minerals 8(10):456. https://doi.org/10.3390/min8100456

    Article  Google Scholar 

  • Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38:59–69. https://doi.org/10.1016/j.oregeorev.2010.05.007

    Article  Google Scholar 

  • Gana S, Bouabsa L, Lamouri B, Fagel N (2019) Geological, petrographic and mineralogical study of the Bentonitic formations of Hammam Boughrara (North-West Algeria). J Biol Environ Sci 14(4):34–43

    Google Scholar 

  • Goetz AFH, Rowan LC (1981) Geol Remote Sens Sci 211:781–791

    Google Scholar 

  • Goetz AFH et al (1987) High resolution imaging spectrometer: science opportunities for the 1990s, NASA TM 86129, Part 2c, p. 74

  • Guardia P (1975) Géodynamique de la marge alpine du continent africain d’après l’étude de l’Oranie nord –occidentale. Relations structurales et paléogéographiques entre le Rif externe, le Tell et l’avant pays atlasique, Thèse Sc. Univ, Nice (France), 289p.

  • Haddad M (1989) Prospection géochimique stratégique du massif des M’Sirda Fouaga (Algérie nord occidentale) : traitement informatique des données géochimiques. Rapport de fin de Cycle C.E.S.E.V. Nancy. EREM, 1989.

  • Harcouët V (2005) Modélisations thermiques de gisements orogéniques mésothermaux: application au Ghana, Géophysique (physics.geo-ph). Institut de physique du globe de Paris- IPGP; Francais.

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527. https://doi.org/10.1038/370519a0

    Article  Google Scholar 

  • Hu B, Xu Y, Wan B, Wu X, Yi G (2018) Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau. China Ore Geol Rev 101:384–397. https://doi.org/10.1016/j.oregeorev.2018.07.017

    Article  Google Scholar 

  • Ibrahim E, Barnabéa P, Ramanaidoub E, Pirarda E (2018) Mapping mineral chemistry of a lateritic outcrop in new Caledonia through generalized regression using Sentinel-2 and field reflectance spectra. Int J Appl Earth Obs Geoinf 73:653–665. https://doi.org/10.1016/j.jag.2018.08.004

    Article  Google Scholar 

  • Issaadi A (1992) Le thermalisme dans son cadre géostructural, apports à la connaissance de la structure profonde de l’Algérie et de ses ressources géothermales. University of Science and Technology Houari Boumediene, Algiers, Thèse de Doctorat d’Etat

    Google Scholar 

  • Kaufmann H, Segl K, Itzerott S, Bach H, Wagner A, Hill J, Heim B, Oppermann K, Heldens W, Stein E, Müller A, van der Linden S, Leitão P J, Rabe A, Hostert P (2010) Hyperspectral algorithms report in the frame of EnMAP preparation activities. Sci. Tech. Rep STR10/08.

  • Leclaire L (1970) Plateau continental nord-africain: nature de la couverture sédimentaire actuelle et récente, thèse d’État, Paris, 1970, 391 p.

  • Loughlin WP (1991) Principal component analysis for alteration mapping. Photogramm Eng Remote Sens 57(9):1163–1169

    Google Scholar 

  • Louni-Hacini A (2002) La transition du magmatisme calco-alcalin au magmatisme alcalin dans l’Oranie (Algerie Nord occidentale ) .thèse de doctorat d'état en science de la terre . Faculté des Sciences de la Terre, de Géographie et de l’Aménagement du Territoire, USTHB, Algerie. P 183.

  • Louni-Hacini A, Bellon H, Maury RC, Coulon C, Semroud B, Cotten J, Coutelle A (1995) Datation K40-Ar40 de la transition du volcanisme calco alcalin en Oranie au Miocène supérieur R.Acad. Sci Paris Série II:975–982

    Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65. https://doi.org/10.1016/j.earscirev.2006.09.002

    Article  Google Scholar 

  • Lustrino M, Duggen S, Rosenberg CL (2011) The Central-Western Mediterranean: anomalous igneous activity in an anomalous collisional tectonic setting. Earth Sci Rev 104:1–40. https://doi.org/10.1016/j.earscirev.2010.08.002

    Article  Google Scholar 

  • Madani A A, Abd-ElRahman E M, Fawzy K M, Emam A (2003) Mapping of the hydrothermal alteration zones at Haimur gold mine area, South Eastern Desert, Egypt, using remote sensing techniques. Egyptian J Remote Sens Space Sci 47–60.

  • Maghraoui M, Morel JL, Andrieux J, Dahmani M (1996) Tectonique Plio-quaternaire de la chaine tello-rifaine de la Mer d’Alboran.une zone complexe de convergence continent-continent. Bull Soc Geol Fr 167(1):141–157

    Google Scholar 

  • Mahboob MA, Genc B, Celik T, Ali S, Atif I (2019) Mapping hydrothermal minerals using remotely sensed reflectance spectroscopy data from Landsat. J South Afr Inst Min Metall 119:279–289. https://doi.org/10.17159/2411-9717/2019/v119n3a7

    Article  Google Scholar 

  • Marignac C, Zimmermann JL (1983) Ages K-Ar de l’événement hydrothermal et des intrusions associees dans le district minéralise miocène d’Aın-Barbar (Est Constantinois, Algérie). Mineral Deposita 18:457–467

    Article  Google Scholar 

  • Mather P M (1987) Computer processing of remotely sensed images”, an international, John Wiley and Sons. 212p.

  • Maury RC, Fourcade S, Coulon C, El Azzouzi M, Bellon H, Ouabadi A, Semroud B, Megartsi M, Cotten J, Belanteur O, Louni-Hacini A, Coutelle A, Pique A, Capdevila R, Hernandez J (2000) Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab detachment. CR Acad Sci Paris 331:159–173

    Google Scholar 

  • Medini S (2010) Processus pyrometasomatiques et hydrothermaux lies à l'activité volcanique calco-alcaline du complexe des M'sirda (Oranie Nord occidentale). incidences gitologiques. Université d’Oran. Faculté des Sciences de la Terre, de Géographie et de l’Aménagement du Territoire. P110.

  • Megartsi M (1985) Le volcanisme Mio-Plio-Quaternaire de l’Oranie nord –occidentale. Géologie, pétrologie et géodynamique, Thèse de Doctorat d’Etat, University of Science and Technology Houari Boumediene, Algiers, P 296.

  • Megaw P ( 2006) Exploration of Low Sulfidation Epithermal Vein Systems.

  • Mia B, Fujimitsu Y (2012) Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu. Japan J Earth Syst Sci 121(4):1049–1057. https://doi.org/10.1007/s12040-012-0211-9

    Article  Google Scholar 

  • Mia M, Fujimitsu Y, Nishijima J (2019) Exploration of hydrothermal alteration and monitoring of thermal activity using multi-source satellite images: a case study of the recently active Kirishima volcano complex on Kyushu Island, Japan. Geothermics 79:26–45

    Article  Google Scholar 

  • Mokhtari Z, Boomri M, Baghri S (2015) Digital image processing and analysis techniques for detection of hydrothermal alteration zones: a case study in Siah-Jangal Area, North of Taftan Volcano, Southeastern Iran. J Indian Soc Remote Sens 43(2):363–377. https://doi.org/10.1007/s12524-014-0422-4

    Article  Google Scholar 

  • Mulder V L, Plotze M, Bruin DS, Schaepman M E, Mavris C, Kokaly RF, Egli M (2013) Quantifying mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1–2.4 µm) and regression tree analysis. Geoderma, 279–290. https://doi.org/10.1016/j.geoderma.2013.05.011

  • Muraour P (1970) Considérations sur la genése de la Mediterranée occidentale et dué golfe de gascogne (Atlantique). Tectonophysics 10:663–677. https://doi.org/10.1016/0040-1951(70)90052-1

    Article  Google Scholar 

  • Mwaniki M W, Moeller M S, Schellmann G (2015) A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: a case study of central region Kenya The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7/W3, 36th Int Symp Remote Sensing Environ, Berlin, Germany. 10.5194/isprsarchives-XL-7-W3-897-2015

  • Nait Amara B, Aissa DE, Maouche S, Braham M, Machane D, Guessoum N (2019) Hydrothermal alteration mapping and structural features in the Guelma basin (Northeastern Algeria): contribution of Landsat-8 data. Arab J Geosci 12:94. https://doi.org/10.1007/s12517-019-4224-4

    Article  Google Scholar 

  • Ninomiya Y (2003) Astabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. In Geoscience and Remote Sensing Symposium, 2003. IGARSS’03. Proceedings. 2003 IEEE International, vol. 3, pp 1552–1554. IEEE

  • Ouali S, Hadjiat M, Ait-Ouali A, Salhi K, Malek A (2018) Cartographie et caractérisation des ressources géothermiques de l’Algérie,&nbsp. J Renew Energies 21(1):54–61. https://revue.cder.dz/index.php/rer/article/view/669. Accessed 14 Feb 2023

  • Pak US, Pak UC (2021) Detection of hydrothermal alteration zones using Landsat 8 OLI image: a case study of gold prospecting in Nyongwon area. J Indian Soc Remote Sens, DPR Korea. https://doi.org/10.1007/s12524-021-01385-8

    Book  Google Scholar 

  • Peleli S, Kouli M, Marchese F, Lacava T, Vallianatos F, Tramutoli V (2021) Monitoring temporal variations in the geothermal activity of Miocene Lesvos volcanic field using remote sensing techniques and MODIS – LST imagery. Int J Appl Earth Observ Geoinformation 95 https://doi.org/10.1016/j.jag.2020.102251.

  • Pour AB, Hashim M (2015) Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. J Taibah Univ Sci 9:155–166

    Article  Google Scholar 

  • Pour AB, Hashim M, Van Genderen J (2013) Detection of hydro-thermal alteration zones in a tropical region using satellite remote sensing data: Bau gold field, Sarawak, Malaysia, Ore Geol. Rev 54:181–196. https://doi.org/10.1016/j.oregeorev.2013.03.010

    Article  Google Scholar 

  • Rameshchandra Phani P (2014) A gis based correlation between lineaments and gold occurrences of ramagiri- penakacherlaschist belt, Eastern Dharwar craton, India. Int J Geol Earth Environ Sci 259–267.

  • Ramadan TM, Kontny A (2004) Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District. SE Desert, Egypt, Journal of African Earth Sciences 40:89–99. https://doi.org/10.1016/j.jafrearsci.2004.06.003

    Article  Google Scholar 

  • Rockwell B W (2013) Automated mapping of mineral groups and green vegetation from Landsat thematic mapper imagery with an example from the San Juan Mountains, Colorado. U.S. Geological Survey Scientific Investigations Map 3252, pamphlet, 1 map sheet, scale 1:325,000, 25 p.

  • Rockwell BW, Hofstra AH (2008) Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 4(1):218–246. https://doi.org/10.1130/GES00126.1

    Article  Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the mountain pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sens Environ 84:350–366. https://doi.org/10.1016/S0034-4257(02)00127-X

    Article  Google Scholar 

  • Rowan LC, Goetz AFH, Ashley RP (1977) Discrimination of hydrothermally altered and unaltered rocks in visible and nearinfrared multispectral images. Geophysics 42:522–535. https://doi.org/10.1190/1.1440723

  • Sabins FF (1999) Remote sensing for mineral exploration. Ore Geol Rev 14:157–183. https://doi.org/10.1016/S0169-1368(99)00007-4

    Article  Google Scholar 

  • Savelli C (2002) Time espace distribution of magmatic activity in the western Mediterranean and peripheral orogens during the past 30 Ma (a stimulus to geodynamic considerations). J Geodyn 34:99–126. https://doi.org/10.1016/S0264-3707(02)00026-1

    Article  Google Scholar 

  • Singh A, Harrisson A (1985) Standardized principal components Department of Geography. University of reading, England. https://doi.org/10.1080/01431168508948511

    Book  Google Scholar 

  • Smith R B (2012) Introduction to hyperspectral imaging. MicroImages, Inc., 1999–2012.

  • Swayze G A, Clark R N (1990) Infrared spectra and crystal chemistry of scapolites: Implications for Martian mineralogy. J Geophys Res 95( B9):14481–14495. https://doi.org/10.1029/JB095iB08p12653

  • Taleb-Ouibrahim Z, Benali H, Medini S, Belmouhoub A (2014) Developing a geographic information system (GIS) for mapping and analyzing the polymetallic deposits of M’Sirda volcanic province, Northwest Algeries. Arab J Geosci 2107–2117. https://doi.org/10.1007/s12517-013-0968-4

  • Titov E (1992) Rapport final sur les résultats des travaux de prospection des polymétaux associes au volcanisme effectuées dans le massif des M’sirda (région nord ouest algérien). ORGM, 1989–1992.

  • Torres-Vera MA, Prol-Ledesma RM (2003) Spectral enhancement of selected pixels in thematic mapper images of the Guanajuato district (Mexico) to identify hydrothermally altered rocks. Int J Remote Sens 24(22):4357–4373. https://doi.org/10.1080/0143116031000075134

    Article  Google Scholar 

  • Tuduri J, Chauvet A, Barbanson L, Labriki M, Dubois M, Trapy PH (2018) Structural control, magmatic-hydrothermal evolution and formation of hornfelshosted, intrusion-related gold deposits: insight from the Thaghassa deposit in Eastern Anti-Atlas. Morocco Ore Geol Rev 97:171–198. https://doi.org/10.1016/j.oregeorev.2018.04.023

    Article  Google Scholar 

  • Turner DJ, Rivard B, Groat LA (2014) Visible and short-wave infrared reflectance spectroscopy of REE phosphate minerals. Am Miner 99:1335–1346. https://doi.org/10.2138/am-2016-5692

    Article  Google Scholar 

  • USGS (2016) Landsat 8 (L8) Data users handbook version 2.0. EROS, Sioux Falls, South Dakota

  • Van der Meer F (2004) Analysis of spectral absorption features in hyperspectral imagery. Int J Appl Earth Obs Geoinf 5(1)55–68. https://doi.org/10.1016/j.jag.2003.09.001

  • Van Der Meer FD, van der Werff HMA, Van Ruitenbeek FJA, Hecker CA, Bakker WH, Noomen MF, Vander Meijde ME, Carranza EJM, De Smeth JB, Woldai T (2012) Multi- and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinf 14:112–128. https://doi.org/10.1016/j.jag.2011.08.002

    Article  Google Scholar 

  • Velosky JC, Stern RJ, Johnson PR (2003) Geological control of massive sulfide mineralization in the neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Res 123:235–247. https://doi.org/10.1016/S0301-9268(03)00070-6

  • Villemaire C (1988) Les amas sulfures du massif miocène d’El Aouana (Algerie) I. Dynamisme de mise en place des roches volcaniques et implications metallogeniques. J Afr Earth Sci 7:133–148. https://doi.org/10.1016/0899-5362(88)90060-7

    Article  Google Scholar 

  • Xu Y, Qizhong L, Yun S, Lu W (2004) Extraction mechanism of alteration zones using ASTER imagery. IGARSS 2004. 2004 IEEE Int Geosci Remote Sens Symp 4174–4175 https://doi.org/10.1109/IGARSS.2004.1370054

  • Zhang G, Wasyliuk K, Pan Y (2001) The characterization and quantitative analysis of clay minerals in the Athabasca Basin, Saskatchewan: application of shortwave infrared reflectance spectroscopy. Can Mineral 39(5):1347–1363. https://doi.org/10.2113/gscanmin.39.5.1347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadidja Moussaoui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussaoui, K., Benali, H., Kermani, S. et al. Detection of hydrothermal alteration and structural characteristics of Miocene volcanic rocks using remote sensing in the M’sirda region (northwestern Algeria). Appl Geomat 15, 189–207 (2023). https://doi.org/10.1007/s12518-023-00496-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-023-00496-w

Keywords

Navigation