Skip to main content

Advertisement

Log in

A comparison assessment of trace and rare earth elements concentration and associated health risk in groundwater from northcentral and southeastern Nigeria

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The present study assesses the pollution load of groundwater with reference to the trace and rare earth elements (REEs) and the potential health risk by its consumption for the residents of three distinct geological areas underlain by rocks of Quaternary (area 1), Cretaceous (area 2), and Precambrian, areas 3A and 3B in southeastern (SEN) and northcentral (NCN) Nigeria respectively. For this, 75 groundwater samples were collected and analyzed for physical parameters including hydrogen ion concentration (pH), electrical conductivity (EC), and total dissolved solids (TDS), trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn), and REEs. The pH varied from acidic to alkaline, with EC (6–1270 μS/cm) and TDS (8–922 mg/l) below guideline values. Concentration of Al (16.78–3716 μg/l), Ba (7.83–730.8 μg/l), Fe (33.72–1192.5 μg/l), and Mn (3.58–1192.0 μg/l) in some locations were higher than their respective guideline values. REEs (0.05–26.42 μg/l) PAAS normalized values showed negative Ce and positive Eu patterns with minor variations to positive Ce and flat patterns. Geochemical analysis of the groundwater samples showed that areas 1, 2, and 3A were severely contaminated with Al, while area 3B was contaminated with Fe. Multivariate analysis indicated that elements in groundwater were contaminated mainly through natural (Al, As, Ba, Fe, Mn, Ni, REE) as well as anthropogenic (As, Cd, Cu, Cr, Pb, V, and Zn) sources, degree of contamination (Cd), trace element pollution index (TEPI), and trace element evaluation index (TEEI) for the different areas for most groundwater samples were below critical values, indicating low pollution. However, rare earth element evaluation index (REEEI) showed various level of pollution in the different areas, in the order 3A > 1 > 2 > 3B. For the majority of groundwater samples across the different areas, non-carcinogenic health risk was not observed as the hazard quotient (HQ) values were less than unity, except for Al. The hazard index (HI) values were higher than unity for all areas and age groups (1.60–754.61) due to Al, indicating unacceptable non-carcinogenic health risk. The total carcinogenic risk (CRTOTAL) values were ranged 1.10E-04 to 6.21E-03 for all areas and age groups, suggesting that the CRTOTAL values were at unacceptable level of 1.00E-04 for sum of all PHEs. The order was Cd > Ni > As > Cr > Pb. In all cases, higher values of HI and CR were obtained for children compared to adults and infants in the entire study area, which means that children are more susceptible to health impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from Moumouni et al. 2007)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References   

  • Abbas MA, Muhammad I, Hafiz MT, Veysel T, Muniba F (2022) Chapter 16 (2022)- Microcontaminants in wastewater. In: Muhammad ZH, Shuhong W, Zulkfil A (eds)  In Advances in Pollution Research, Environmental Micropollutants, Elsevier pp 315–329, https://doi.org/10.1016/B978-0-323-90555-8.00018-0

  • Abdulla EJ (2013) Evaluation of surface water indices. Elsevier, Amsterdam, p 384

  • Abimbola AF, Odukoya AM, Olatunji AS (2002a) Influence of bedrock on the hydrogeochemical characteristics of groundwater in northern part of Ibadan Metropolis. SW Nigeria Water Resour J 13:2–6

    Google Scholar 

  • Abimbola AF, Oke SA, Olatunji AS (2002b) Environmental impact assessment of waste dumpsites on geochemical quality of water and soils in Warri Metropolis, southern Nigeria. Water Resour J 13:7–11

    Google Scholar 

  • Abulude FO, Obidiran GO, Orungbemi S (2007) Determination of physicochemical parameter and trace metal contents of drinking water samples in Akure. Ejeafche 6(8):2297–2303

    CAS  Google Scholar 

  • Adamu CI, Nganje T, Edet A (2013) Hydrochemical assessment of pond and stream water near abandoned barite mine sites in parts of Oban massif and Manfe Embayment. Southeastern Nigeria Environ Earth Sci. https://doi.org/10.1007/s12665-013-2757-5

  • Adamu CI, Nganje TN, Edet A (2014) Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria Environmental Nano. Monitoring and Management 3:10–21

    Google Scholar 

  • Adekola O, Bashir A, Kasimu A-M (2015) Physico-chemical characteristics of borehole water quality in Gassol Taraba State, Nigeria. Afr J Environ Sci Technol 9(2):143–154

    Article  Google Scholar 

  • Ahamed S, Kumar SM, Mukherjee A, Amir HM, Das B, Nayak B, Pal A, Mukherjee SC, Pati S, Dutta RN, Chatterjee G, Mukherjee A, Srivastava R, Chakraborti D (2006) Sci Total Environ 370(2–3):139–166

    Google Scholar 

  • Ahiarakwem CA, Ejimadu OG (2002) Geochemical properties of groundwater in Orlu area of Imo State. Southeastern Nigeria Water Res 13:19–22

    Google Scholar 

  • Akakuru OC, Akudinobi BEB, Usman AO (2017) Organic and heavy metal assessment of groundwater sources around Nigeria National Petroleum Cooperation Oil Depot Aba. South-Eastern Nigeria J Natur Sci Res 7(24):48–54

    Google Scholar 

  • Akinola LK, Ibrahim A, Chadi AS (2015) Assessment of heavy metal contamination of groundwater within Misau Town in North-Eastern Nigeria Al-Hikmah. J Pure Appl Sci 2(1):44–49

    Google Scholar 

  • Akubugwo EI, Ude VC, Uhuegbu FO, Ugbogu O (2012) Physicochemical properties and heavy metal content of selected water sources in Ishiagu, Ebonyi State- Nigeria. J Biodivers Environ Sci 2(2):21–27

    Google Scholar 

  • Akujieze CN, Coker SJL, Oteze GE (2003) Groundwater in Nigeria-a millennium experience, distribution, practice, problems and solutions. Hydrogeol J 11:259–274

    Article  ADS  Google Scholar 

  • Alagbe SA (2002) Groundwater resources of river Kan Gimi Basin, north-central Nigeria. Environ Geol 42:404–413

    Article  CAS  Google Scholar 

  • Alam W, Singh KS, Gyanendra L, Nesa N (2020) Hydrogeochemical assessment of groundwater quality for few habitations of Chandel District, Manipur (India). Appl Water Sci 10:123. https://doi.org/10.1007/s13201-020-01208-0

    Article  ADS  CAS  Google Scholar 

  • Amori AA, Oduntan OO, Okeyode IC, Ojo SO (2013) Heavy metal concentration of groundwater deposits in odela region, Ogun State, Nigeria. J Environ Res Manag 4(5):253–259

    CAS  Google Scholar 

  • Anake WU, Benson NU, Akinsiku AA, Ehi-Eromosele CO, Adeniyi IO (2014) Assessment of trace metals in drinking water and groundwater sources in Ota. Nigeria Int J Sci Res Publ 4(5):1–4

    Google Scholar 

  • Andia JBC (1996) Aluminum toxicity: its relationship with bone and iron metabolism. Nephrol Dial Transplant 11(Suppl 3):69–73. https://doi.org/10.1093/ndt/11.supp3.69

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. America Water Works Association Water Environment Federation, Washington, DC

    Google Scholar 

  • APHA, Awwa, WEF (American Public Health Association, American Water Works Association, Water Environment Federation) (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC

  • Arnason JG, Fletcher BA (2003) A 40+year record of Cd, Hg, Pb and U deposition in sediments of Patroon Reservoir, Albany Country. NY USA Environmental Pollution 123(3):383–391

    Article  CAS  PubMed  Google Scholar 

  • ATSDR, Agency for Toxic Substances and Disease Registry (2007) Toxicological profile for barium and barium compounds. US Department of Health and Human Services-Public Health Service

  • ATSDR Agency for Toxic Substances and Disease Registry (2008) Toxicological profile for aluminum US Department of Health and Human Services, Public Health Service p 357

  • Awalla CO, Ezeigbo HI (2002) An appraisal of water quality in the Uburu-Okposi area, Ebonyi State, southeastern Nigeria. Water Resour 13:33–39

    Google Scholar 

  • Ayantobo OO, Awomeso JA, Oluwasanya GO, Bada BS, Taiwo AM (2014) Non-cancer human health risk assessment from exposure to heavy metals in surface and groundwater in Igun Ijesha Southwest Nigeria. Am J Environ Sci 10(3):301–311. https://www.tldp.com/issue/180/Clinical%20Efects%20of%20Mn.html. Accessed 5 May 2018

    Article  CAS  Google Scholar 

  • Ayedun H, Taiwo AM, Umar BF, Oseni OA, Oderinde AA (2011) Assessment of groundwater contamination by toxic metals in Ifo, Southwestern Nigeria. Indian J Sci Technol 4(7):820–823

    Article  CAS  Google Scholar 

  • Ayedun H, Arowolo TA, Gbadebo AM, Idowu OA (2017) Evaluation of rare earth elements in groundwater of Lagos and Ogun States. Southwest Nigeria Environ Geochem Health 39(3):649–664. https://doi.org/10.1007/s10653-016-9839-8

    Article  CAS  PubMed  Google Scholar 

  • Backman B, Bodis D, Lahermo P, Rapant S, Tarvainen T (1997) Application of a groundwater contamination index in Finland and Slovakia. Environ Geol 36:55–64. https://doi.org/10.1007/s002540050320

    Article  Google Scholar 

  • Bagul et al (2015) New perspective on heavy metal pollution of water. J Chem Pharm Res 7(12):700–705

    CAS  Google Scholar 

  • Banks D, Hall G, Reinmann C, Siewers U (1999) Distribution of rare earth elements in crstalline bedrock groundwaters: Oslo and Bergen regions, Norway. Appl Geochem 14:27–39

    Article  ADS  CAS  Google Scholar 

  • Banner JL, Wasserburg GJ, Dobson PF, Carpenter AB, Moore CH (1989) Isotopic and trace element constraints on the origin and evolution of saline groundwaters from central Missouri. Geochemica Et Cosmochimica Acta 53:383–398

    Article  ADS  CAS  Google Scholar 

  • Batabyal AK, Chakraborty S (2015) Hydrogeochemistry and water quality index in the assessment of groundwater quality for drinking use. Water Environ Res 87:607–617. https://doi.org/10.2175/106143015X14212658613956

    Article  CAS  PubMed  Google Scholar 

  • Batayneh AT (2012) Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. Int J Environ Sci Technol 9:153–162. https://doi.org/10.1007/s13762-011-0009-3

    Article  CAS  Google Scholar 

  • Bau M, Dulski P (1999) Comaring yttrium and rare earth elements in hydrothermal fluids from mid-Atlantic ridge: implications for Y and REE behavior during nearvent mixing and for Y/Ho ratio of Proterozoic seawater. Chem Geol 155:77–90

    Article  ADS  CAS  Google Scholar 

  • Bhaskar CV, Kumar K, Nagendrappa G (2010) Assessment of heavy metals in water samples of certain locations situated around Tumkur, Karnataka. India J Chem 7(2):349–352

    Google Scholar 

  • Biddau R, Bensimon M, Cidu R, Parriaux A (2009) Rare earth elements in groundwater from different Alpine aquifers. Chem Erde 69:327–339

    Article  CAS  Google Scholar 

  • Boateng TK, Opoku F, Akoto O (2019) Heavy metal contamination assessment of groundwater quality: a case study of Oti landfill. Kumasi Applied Water Science 9(33):1–15. https://doi.org/10.1007/s13201-019-09-y

    Article  CAS  Google Scholar 

  • Boboye OA (2008) Hydrogeochemical assessment of groundwater in Iddo area, southwestern Nigeria. J Min Geol 44(2):183–201

    Google Scholar 

  • Bondy SC (2010) The neurotoxicity of environmental aluminum. Neurotoxicology 31(5):575–581. https://doi.org/10.1016/j.neuro.2010.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen HM (1979) Environmental chemistry of the trace elements. Academic Press, New York

  • Braun JJ, Viers J, Dupré B, Polve M, Ndam J, Muller J (1988) Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochim Cosmochim Acta 62(2):273–299

    Article  ADS  Google Scholar 

  • Brindha K, Jagadeshan G, Kalpana L, Elango L (2016) Fluoride in weathered rock aquifers of southern India: managed Aquifer recharge for mitigation. Environ Sci Pollut Res 23:8302–8316

    Article  CAS  Google Scholar 

  • Brindha K, Paul R, Walter J, Leong M, Singh MK (2020) Trace metals contamination in groundwater and implications on human health: comprehensive assessment using hydrogeochemical and geostatistical methods. Environ Geochem Health 42:3819–3839. https://doi.org/10.1007/s10653-020-00637-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookins DG (1988) Eh-pH diagrams for geochemistry, Berlin, Springer pp 122–140

  • Caboi R, Cidu R, Fanfani L, Lattanzi P, Zuddas P (1999) Environmental mineralogy and geochemistry of the abandoned Pb–Zn Montevecchio-Ingurtosu mining district, Sardinia, Italy. Chron Rech Miniere 534:21–28

    Google Scholar 

  • Chakraborti D, Rahman MM, Ahamed S (2016) Environ Sci Pollut Res 51:9492–9504

    Article  Google Scholar 

  • Chanpiwat P, Lee B-T, Kim K-W, Sthiannopkao S (2014) Human health risk assessment for ingestion exposure to groundwater contaminated by naturally occurring mixtures of toxic heavy metals in the Lao PDR. Environ Monit Assess 186:4905–4923. https://doi.org/10.1007/s10661-014-3747-0

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY (2004) The biological hormesis-effects of rare earth elements and potential effects of application of rare earths on agricultural eco-environment. Rural Eco-Environ 20(4):1–5

    Google Scholar 

  • Chen H, Teng Y, Lu S et al (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512–513:143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chen X, Liu YZ, Li JQ et al (2016) Response of rare earth tailing soil bacterial community structure to vegetation restoration. Acta Ecolo Sin 36(13):3943–3950

    CAS  Google Scholar 

  • Chen L, Ma T, Du Y, Xiao C (2017) Dissolved rare earth elements of different waters in Qaidam Basin, Northwestern China. Procedia Earth Planet Sci 17:61–64. https://doi.org/10.1016/j.proeps.2016.12.031

    Article  ADS  Google Scholar 

  • Chen H, Chen Z, Chen Z, Ou X, Chen J (2020) Calculation of toxicity coefficient of potential ecological risk assessment of rare earth elements. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-020-02840-x

    Article  PubMed  Google Scholar 

  • Chidambaram S, Prasad MBK, Prasanna MV, Manivannan R, Anandhan P (2015) Evaluation of metal pollution in groundwater in the industrialized environs in and around Dindigul, Tamilnadu, India. Water Qual Expo Health 7:307–317. https://doi.org/10.1007/s12403-014-0150-6

    Article  CAS  Google Scholar 

  • Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen H-J (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45:165–241

    Article  CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen H-J, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    Article  ADS  CAS  Google Scholar 

  • Planning Commission (2011) Report of the working group on rural domestic water and sanitation, twelfth five-year plan 2012–2017 (p 220). Ministry of Drinking Water and Sanitation: Government of India 

  • Dahl C, Søgaard AJ, Tell GS, Flaten TP, Hongve D, Omsland TK, Aamodt G (2014) Do cadmium, lead, and aluminum in drinking water increase the risk of hip fractures? A NOREPOS Study. Biol Trace Elem Res 157(1):14–23

    Article  CAS  PubMed  Google Scholar 

  • Deutsch WJ (1997) Groundwater chemistry: fundamentals and applications to contamination. Lewis Publishers, New York, p 221

  • DeZuane J (1997) Drinking water quality, 2nd edn. John Wiley & Sons Inc. 575

  • Dolara P (2014) Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminum, bismuth, cobalt, gold, lithium, nickel, silver). Int J Food Sci Nutr 65(8):911–924. https://doi.org/10.3109/09637486.2014.937801

    Article  CAS  PubMed  Google Scholar 

  • Drever JI (2002) The geochemistry of natural waters: surface and groundwater environments. Prentice Hall NJ p 436

  • Duruibe J, Ogwuegbu M, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Dusa AA, Timothy N, Magili ST, Tukur S (2017) Determination of heavy metals in boreholes, hand dug wells and surface water in some selected areas of Mubi North Local Government Area Adamawa State, Nigeria. Int Res J Chem Chemic Sci 4(1):75–81

    Google Scholar 

  • Edet AE (1993a) Groundwater quality assessment in parts of eastern Niger delta. Nigeria Environ Geol 22:41–46

  • Edet AE (1993b) Hydrogeology of parts of Cross River State, Nigeria: evidence from aero-geological and surface resistivity studies. PhD Thesis, University of Calabar, Calabar, Nigeria. Unpublished p 316

  • Edet AE (2004) A Preliminary assessment of rare earth elements concentrations in an acidic fresh groundwater (Southeastern Nigeria). Applied Earth Science 113:100–109. (Trans. Inst. Min. Metall. B) 

  • Edet A (2008) Hydrogeochemical characteristics of groundwater in the in parts of the Niger Delta. In Proceedings 1st Postgraduate Researchers Conference on Meeting Environmental Challenges in the Coastal Regions of Nigeria 29-30 September 2008. University of Abertay Dundee, United Kingdom. 

  • Edet AE, Teme SC, Okereke CS, Esu EO (1994) Lineament analysis for groundwater exploration in Precambrian Obudu and Oban massif southeastern Nigeria. J Min Geol 30(1):87–95

    Google Scholar 

  • Edet AE, Offiong OE (2002) Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southern Nigeria) Geojournal 57:295–304

  • Edet AE, Okereke CS (2002) Delineation of shallow groundwater aquifers in the coastal plain sands of Calabar area (southern Nigeria) using surface resistivity and hydrogeological data. J Afr Earth Sc 35:433–443

    Article  Google Scholar 

  • Edet A, Okereke CS (2014) Hydrogeologic framework of the shallow aquifers in the Ikom-Mamfe Embayment, Nigeria using an integrated approach. J Afr Earth Sc 92:25–44

    Article  CAS  Google Scholar 

  • Edet AE, Merkel BJ, Offiong OE (2003) Trace element hydrochemical assessment of the Calabar Coastal Plain Sands, southeastern Nigeria using statistical methods Environ. Geol 44:137–149

    CAS  Google Scholar 

  • Ekwere A, Edet A (2012) Trace metals in ground and surface waters of the Oban massif area. SE Nigeria Adv Appl Sci Res 3(1):312–318

    CAS  Google Scholar 

  • Elderfield H, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of seawater. Geochim Cosmochim Acta 54:971–991

    Article  ADS  CAS  Google Scholar 

  • Elinder CG (1986) Zinc. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals, 2nd edn. Elsevier, Amsterdam, pp 664–676

    Google Scholar 

  • Ekere NR, Ihedioha JF, Eze IS, Agbazue VE (2014) Health risk assessment in relation to heavy metals in water sources in rural regions of South East Nigeria. Int J Phys Sci 9(6):109–116

    Article  Google Scholar 

  • US EPA (2014) Drinking water contaminants. Available from: https://www.epa.gov/ground-water-and-drinking-water/tableregulated-drinking-water-contaminants. Accessed on 1 July 2016

  • Eze AV, Romanus EN, Ihedioha NB, Ngozi JF (2018) Metals contamination of groundwater resources of Enugu North District. SouthEast Nigeria J Chem Health Risks 8(1):9–17

    CAS  Google Scholar 

  • Ezeigbo HI (1987) Quality of water resources in Anambra State. Nigeria Nig J Min Geol 23(1–2):97–103

    Google Scholar 

  • Fee JA, Gaudette HE, Lyons WB, Long DT (1992) Rare earth element distribution in the Lake Tyrrell groundwaters, Victoria, Australia. Chem Geol 96:67–93

    Article  ADS  CAS  Google Scholar 

  • Ferner DJ (2001) Toxicity, heavy metals. eMed J 2(5):225–227

    Google Scholar 

  • Ficklin WH, Plumlee GS, Smith KS, McHugh JB (1992) Gee-chemical classification of mine drainages and natural drainages in mineralized areas. In Kharaka YK, Maest AS (eds) Water-rock interaction: seventh international symposium on water-rock interaction, Park City, Utah, July 13- 18, 1992, Proceedings, Rotterdam, A.A. Balkema 1:381–384

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs NJ, p 604

  • Frisbie SH, Mitchell EJ, Dustin H, Maynard DM, Sarkar B (2012) World Health Organization discontinues its drinking-water guideline for manganese. Environ Health Perspect 120:775–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganje TD, Rains DW (1982) Arsenic. In: Page AL et al (eds) Methods of soil analysis Part 2 2nd edn, Agron Monogr 9 ASA and SSSA Madison WI pp 385–403

  • Ghesquie’re O, Walter J, Chesnaux R, Rouleau A (2015) Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis. J Hydrol Region Stud 4:246–266. https://doi.org/10.1016/j.ejrh.2015.06.004

    Article  Google Scholar 

  • Gilkerson RH, Specht SA, Cartwright K, Griffin RA, Larson TE (1978) Geologic studies to identify high level of radium and barium in Illinois groundwater supplies: a preliminary report. University of Illinois Water Resources Center Research Report 135, Urbana. http://web.extension.illinois.edu/iwrc/pdf/135.pdf. Accessed 12 May 2014

  • Gimba CE, Ndukwe GI, Paul ED, Habila JD, Madaki LA (2015) Heavy Metals (Cd, Cu, Fe, Mn and Zn,) Assessment of groundwater, In Kaltungo LGA, Gombe State, Nigeria International. J Sci Technol 4(2):49–56

    Google Scholar 

  • Gimeno-García E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25

    Article  PubMed  Google Scholar 

  • Gosselin DG, Smith MR, Lepel EA, Laul JC (1992) Rare earth elements in chloride-rich groundwater, Palo Duro Basin, Texas, USA. Geochim Cosmochim Acta 56:1495–1505

    Article  ADS  CAS  Google Scholar 

  • Gupta VB, Anithaa S, Hegde ML, Zecca L, Garruto RM, Ravid R, Shankar SK, Stein R, Shanmugavelugan P, Jagannath Rao KS (2005) Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci 62(2005):143–158. https://doi.org/10.1007/s00018-004-4317-3

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Gaurav SS, Kumar A (2013) Molecular basis of aluminium toxicity in plants: a review. Am J Plant Sci 4:21–37

    Article  Google Scholar 

  • Gwenzi W, Mangori L, Danha C, Chaukura N, Dunjana N, Sanganyado E (2018) Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci Total Environ 15(636):299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235

    Article  ADS  CAS  Google Scholar 

  • Hannatu W, Okechuku SB, Rhoda G, Bala DA, Fubre A (2014) Distribution of heavy metals in surface and ground water in Mkpuma Akpatakpa and environs. American Journal of Environmental Protection. Special Issue: integrating earth materials, diet, water and human health 3(62):25–29

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd Edn, USGS water Supply Paper 2254:263

  • Hernández-Sánchez A, Tejada-González P, Arteta-Jiménez M (2013) Aluminium in parenteral nutrition: a systematic review. Eur J Clin Nutr 67(3):230–238. https://doi.org/10.1038/ejcn.2012.219

    Article  CAS  PubMed  Google Scholar 

  • Hong AH, Ling LP, Suleman OS, Mboh ABS (2013) Groundwater quality assessment for domestic and irrigation purposes in Yola, Adamawa State Northeastern Nigeria Groundwater Quality Assessment for Domestic and Irrigation Purposes in Yola. Adamawa State Northeastern Nigeria American J Eng Res (AJER) 2(6):34–41

    CAS  Google Scholar 

  • Horton RK (1965) An index number system for rating water quality. J Water Pol Cont Feder 37(3):300–306

    Google Scholar 

  • Huang SS, Liao QL, Hua M, Wu XM, Bi KS, Yan CY, Chen B, Zhang XY (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 67:2148–2155

    Article  ADS  CAS  PubMed  Google Scholar 

  • Huang BH, Zou YD, Bi SD et al (2009) Effects of rare earth elements on the composition of the soil fauna community in a plum orchard. Acta Sci Circum 29(9):1849–1857

    ADS  CAS  Google Scholar 

  • Hussain J, Husain I, Arif M, Gupta N (2017) Studies on heavy metal contamination in Godavari River basin. Appl Water Sci 7:4539–4548. https://doi.org/10.1007/s13201-017-0607-4

    Article  ADS  CAS  Google Scholar 

  • IARC Monographs Vol 100C-9 (2004) International Research on Cancer (IARC). https://www.vol100c/mono100c-9.pdf

  • IARC (International Agency for Research on Cancer) (2020) Monographs on the identification of carcinogenic hazards to humans, Vol 1–127 https://monographs.iarc.fr/list-of-classifications/

  • Ibe FC, Opara AI, Amaobi CE, Ibe BO (2021) Environmental risk assessment of the intake of contaminants in aquifers in the vicinity of a reclaimed waste dumpsite in Owerri municipal. Southeastern Nigeria Appl Water Sci 11:24. https://doi.org/10.1007/s13201-020-01355-4

    Article  CAS  Google Scholar 

  • Ibe FC, Ibe BO, Nzenwa PO, Enedoh MC (2019) Phytochemical, FTIR and elemental studies of African Mistletoe (Viscum album) leaves on Colanitida from South-Eastern Nigeria. World Sci News 132:84–97

    Google Scholar 

  • Ichu BC, Opara AI, Ibe FC (2018) Contamination assessment of heavy metals in road dust of the University of Nigeria, Enugu Campus, Southeastern Nigeria. Aust J Bas Appl Sci 12(12):1–8

    CAS  Google Scholar 

  • ICMR (2009) Nutrient requirements and recommended dietary allowances for Indians. A report of the expert group of the Indian Council of Medical Research (ICMR), Hyderabad, India p 334

  • Idoko OM, Ologunorisa TE, Okoya AA (2012) Temporal variability of heavy metals concentration in rural groundwater of Benue State, Middle Belt. Nigeria J Sustain Develop 5(2):2–16

    Google Scholar 

  • Jahanshahi R, Zare M (2015) Assessment of heavy metals pollution in groundwater of Golgohar iron ore mine area. Iran Environ Earth Sci 74(1):505–520

    Article  ADS  CAS  Google Scholar 

  • Jime´nez-Ballesta R, Garcı´a-Navarro FJ, Bravo S, Amoro´s JA, Pe´rez-de-Los-Reyes C, Mejı´as M (2017) Environmental assessment of potential toxic trace element contents in the inundated floodplain area of Tablas de Daimiel wetland (Spain). Environ Geochem Health 39(5):1159–1177

  • Johannesson KH, Stetzenbach KJ, Hodge VF (1997a) Rare earth elements as geochemical tracers of regional groundwater mixing. Geochim Cosmochim Acta 61:3605–3618

    Article  ADS  CAS  Google Scholar 

  • Johannesson KH, Stetzenbach KJ, Hodge VF, Kreamer DK, Zhou X (1997b) Delineation of ground-water flow systems in the southern Great Basin using aqueous rare earth element distributions. Ground Water 35:807–819

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton, p 12

  • Kamunda C, Mathuthu M, Madhuku M (2016) Health risk assessment of heavy metals in soils from Witwatersrand Gold mining basin. International Jour of Environmental Research and Public Healt, South Africa

    Book  Google Scholar 

  • Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning. J Environ Sci Health A 41(10):2399–2428

    Article  CAS  Google Scholar 

  • Karthikeyan S, Hirata S (2003) Arsenic speciation in environmental samples. Anal Lett 36(11):2355–2366

    Article  CAS  Google Scholar 

  • Khalil M, Muhammad I, Veysel T, Hafiz Muhammad T, Muniba F, Ammar A, Samia Y (2022) Chapter 11 - Household chemicals and their impact. In: Muhammad ZH, Shuhong W, Zulkfil A (eds) In Advances in Pollution Research, Environmental Micropollutants, Elsevier pp 201–232. https://doi.org/10.1016/B978-0-323-90555-8.00022-2

  • Khan TA (2011) Trace elements in the drinking water and their possible health effects in Aligarh City, India. J Water Res Protect 3:522–530

    Article  CAS  Google Scholar 

  • Khan TA, Abbasi MA (2004) Effects of trace elements on human metabolism and their presence in the potable water of Ganga– Nim groundwater basin. India Water Resour 31(5):588–591

    Article  Google Scholar 

  • Khan K, Lu Y, Khan H, Zakir S, Khan AA et al (2013) Health riskd associated with metals in the drinking water of Swat, northern Pakistan. J Environ Sci 25(10):2003–2013

    Article  CAS  Google Scholar 

  • Kiani H, Shahmohamadi S, Hadi M (2013) Study of breakthrough curves for column of bed to remove manganese from aqueous solution by the windy sand of sistan plain. J Environ 39(1):21–30

    Google Scholar 

  • Kim YS, Park HS, Kim JY, Park SK, Cho BW, Sung IH, Shin DC (2004) Health risk assessment for uranium in Korean groundwater. J Environ Radioact 77(1):77–85

    Article  CAS  PubMed  Google Scholar 

  • Kondakis XG, Makris N, Leotsinidis M, Prinou M, Papapetropoulos T (1989) Possible health effects of high manganese concentration in drinking water. Arch Environ Health 44(3):175–178

    Article  CAS  PubMed  Google Scholar 

  • Kothe E, Varma A (2012) Bio-geo interactions in metal contaminated soils. Springer, Berlin

  • Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminum, aluminum oxide and aluminum hydroxide. J Toxicol Environ Health, Part B 10(S1):1–269

    Article  CAS  Google Scholar 

  • Krishna AK, Satyanarayanan M, Govil PK (2009) Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak district, Andhra Pradesh, India. J Hazard Mater 167:366–373

    Article  CAS  PubMed  Google Scholar 

  • Laniyan TA, Kehinde POO, Elesha L (2011) Hazards of heavy metal contamination on the groundwater around a municipal dumpsite in Lagos. Southwestern Nigeria Int J EngTechnol IJET-IJENS 11(5):61–69

    Google Scholar 

  • Lee SE, Lee JU, Chon HT, Lee JS (2008) Microbiological reduction of hexavalent chromium by indigenous chromium-resistant bacteria in sand column experiments. Environ Geochem Health 30:141–145

    Article  CAS  PubMed  Google Scholar 

  • Li P, Qian H (2011) Human health risk assessment for chemical pollutants in drinking water source in Shizuishan City, Northwest China. Iran J Environ Health Sci Eng 8(1):41–48

    MathSciNet  CAS  Google Scholar 

  • Li P, Li X, Meng X, Li M, Zhang Y (2016) Appraising groundwater quality and health risks from contamination in a semiarid region of northwest China. Expo Health 8(3):361–379. https://doi.org/10.1007/s12403-016-0205-y

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibra in soils (p 449). John Wiley and Sons, New York

  • Longe EO, Malomo S, Olorunnwo MA (1987) Hydrogeology of Lagos metropolis. J Afr Earth Sci 6(2):163–174

    CAS  Google Scholar 

  • Magesh NS, Chandrasekar N, Elango L (2017) Trace element concentrations in the groundwater of the Tamiraparani river basin, South India: insights from human health risk and multivariate statistical techniques. Chemosphere 185:468–479. https://doi.org/10.1016/j.chemosphere.2017.07.044

    Article  ADS  CAS  PubMed  Google Scholar 

  • Matschullat (2000) J Sci Total Environ 249(1–3):297–312

  • Mbachu CC, Aiyegbusi MS, Oyedeji OA, Hussein AY, Adebimpe O, Adetunji A, Okoye GE, Adeniyi D, Bitrus N, Babalola J (2017) Hydrogeochemistry of groundwater in Katsina and environs (Unpublished)

  • McKeeand JE, Wolf HW (1963) Water quality criteria. 2nd edn, Water resources control board publication n_A. The resources agency of California State, Sacramento

  • MEPPRC, Ministry of Environmental Protection of the PRC (2014) Technical guidelines for risk assessment of contaminated sites, HJ 25.3- 2014. China Environmental Science Press, Beijing (in Chinese)

  • Mohan SV, Nithila P, Reddy SJ (1996) Estimation of heavy metals in drinking water and development of heavy metal pollution index. J Environ Sci Health A Environ Sci Eng Toxicol Toxic/hazard Substances Environ Eng 31(2):283–289. https://doi.org/10.1080/10934529609376357

    Article  Google Scholar 

  • Mohod CV, Dhote J (2013) review of heavy metals in drinking water and their effect on human health. Int J Innov Res Sci Eng Technol 2:2992–2996

    Google Scholar 

  • Mokrik R, Karro E, Savitskaja L, Drevaliene G (2009) The origin of barium in the Cambrian-Vendian aquifer system. North Estonia Estonian J Earth Sci 58(3):193–208. https://doi.org/10.3176/earth.2009.3.04

    Article  Google Scholar 

  • Möller P, Dulski P, Bau M, Knappe A, Pekdeger A, Sommervon Jarmersted C (2000) Anthropogenic gadolinium as a conservative tracer in hydrology. J Geochem Explor 69(70):409–414

    Article  Google Scholar 

  • Momot O, Synzynys B (2005) Toxic aluminium and heavy metals in groundwater of middle Russia: health risk assessment. Int J Environ Res Public Health 2(2):214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal NC, Singh VS, Puranik SC, Singh VP (2010) Trace element concentration in groundwater of Pesarlanka Island. Krishna Delta, India Environ Monit Assess 163:215–227. https://doi.org/10.1007/s10661-009-0828-6

    Article  CAS  PubMed  Google Scholar 

  • Mondal P, Bhowmick S, Chatterjee D, Figoli A, Van-der-Bruggen B (2013) Chemosphere 92(2):157–170

    Article  ADS  CAS  PubMed  Google Scholar 

  • Moore RB, Staubitz WW (1984) Distribution and source of barium in groundwater at Cattaraugus Indian reservation, southwestern NY. Water Resources Investigation report 84–4129, US Geological Survey, New York, USA. https://digitalcommons.brockport.edu/cgi/viewcontent.cgi?article=1002&context=wr_misc. Accessed 12 May 2014

  • Moumouni A, Obaje NG, Nzegbuna AI, Chaanda MS (2007) Bulk geochemical parameters and biomarker characteristics of organic matter in two wells (Gaibu-1 and Kasade-1) from the Bornu basin: implications on the hydrocarbon potential. J Petroleum Sci Eng 58:275–282

    Article  CAS  Google Scholar 

  • Moyosore JO, Coker AO, Sridhar MKC, Mumun A (2014) Iron and manganese levels of groundwater in selected areas in Ibadan and feasible engineering solutions. European Scientific Journal April 2014 edition 10(11):137–153

  • Mthembu PP, Elumalai V, Brindha K, Li P (2020) Hydrogeochemical processes and trace metal contamination in groundwater: impact on human health in the Maputaland Coastal Aquifer. South Africa Exposure and Health. https://doi.org/10.1007/s12403-020-00369-2

  • Muhammad TH, Basharat Z, Ramzani PMA, Farhad Muniba, Lewińska K, Turan V, Karczewska A, Khan SAl, Faran G, Iqbal M (2022) Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek. Environ Pollut 313:2022. https://doi.org/10.1016/j.envpol.2022.120064

    Article  CAS  Google Scholar 

  • Musa OK, Shaibu MM, Kudamnya EA (2013) Heavy metal concentration in groundwater around Obajana and its environs. Kogi State, North Central Nigeria Am Int J Contemp Res 3(8):170–177

    Google Scholar 

  • Navoni JA, Pietri D, Olmos V, Gimenez C, Mitre GB, Titto E, Lepori EC (2014) Sci Total Environ 499:166–174

    Article  ADS  CAS  PubMed  Google Scholar 

  • Neal C, Neal M, Hill L, Wickham H (2006) The water quality of the River Thames Basin of south/south-eastern England. Sci Total Environ 360:254–271

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ngah SA, Nwonkwola HO (2013) Iron (Fe2+) occurrence and distribution in groundwater sources in different geomorphic zones of Eastern Niger Delta. Arch Appl Sci Res 5(2):266–272

    CAS  Google Scholar 

  • Nganje TN, Adamu CI, Ugbaja AN, Amah AE (2010) Evaluation of hydrogeochemical characteristics of groundwater in parts of Lower Benue Trough. Nigeria Chin J Geochem 29:398–406

    Article  CAS  Google Scholar 

  • Nganje TN, Adamu CI, Ntekim EEU, Ugbaja AN, Neji P, Nfor EN (2010) Influence of mine drainage on water quality along River Nyaba in Enugu, southeastern Nigeria. Afri J Environ Sci Tech 4(3):132–144

    Article  CAS  Google Scholar 

  • Nganje TN, Adamu CI, Ugbaja AN, Ebieme E, Sikakwe GU (2011) Environmental contamination of trace elements in the vicinity of Okpara coal mine, Enugu, southeastern Nigeria. Arab J Geosci 4:199–205

    Article  CAS  Google Scholar 

  • NIMET (2011) Nigeria climate review bulletin. Nigeria meteorological agency Abuja Nigeria

  • Nitasha K, Sanjiv T (2015) Influence of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front Life Sci 8(1):23–39

    Article  Google Scholar 

  • Nnabo PN (2015) Assessment of heavy metal contamination of water sources from Enyigba Pb-Zn district, South Eastern Nigeria. Int J Sci Technol Res 4(9):187–197

    Google Scholar 

  • Nriagu J (1980) Zinc in environment, part I, ecological cycling. Wiley, New York

  • Nriagu JO (1989) A global assessment of natural resources of atmospheric trace metals. Nature 338:47–49

    Article  ADS  CAS  Google Scholar 

  • Nriagu JO (1996) A history of global metal pollution. Science 272:223–224

    Article  ADS  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nwankwoala HO, Nwagbogwu CN (2012) Characteristics and quality assessment of groundwater in parts of Akure, South-Western Nigeria Journal of Environmental Science and Water. Resources 1(4):67–73

    Google Scholar 

  • Nwankwoala HO, Nwowo KN, Udom GJ (2016) Assessment of heavy metal status of groundwater in parts of Aba, Southeastern Nigeria. Int J Emerg Eng Res Technol 4(11):27–33

    Google Scholar 

  • Obaje NG (2009) Geology and mineral resources of Nigeria (221 p). Springer, Berlin. https://doi.org/10.1007/978-3-540-92685-6

    Book  Google Scholar 

  • Obiefuna GI, Orazulike DM (2011) Geochemical studies of groundwater systems of semiarid Yola area, Northeast Nigeria. Global J Geol Sci 9(1):33–53

    Google Scholar 

  • Obiora SC, Chukwu A, Davies TC (2016a) Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, Southeastern Nigeria. Jour African Earth Sciences 116:182–189. https://doi.org/10.1016/j.jafrearsci.2015.12.025

    Article  ADS  CAS  Google Scholar 

  • Obiora SC, Chukwu A, Toteu SF, Davies TC (2016b) Assessment of heavy metals contamination in soils around lead (Pb)-zinc (Zn) mining areas in Enyigba. Southeastern Nigeria J Geol Soc India 87:453–462

    Article  CAS  Google Scholar 

  • Ogoko EC (2017) Physicochemical properties and heavy metal concentration of groundwater in Owerri metropolis, Nigeria. Current J Appl Sci Technol 23(1):1–10

    Article  Google Scholar 

  • Ogwuegbu MOC, Muhanga W (2005) Investigation of lead concentration in the blood of people in the copperbelt province of Zambia. J Environ 1:66–75

    Google Scholar 

  • Okeke OC, Igboanua AH (2003) Characteristics and quality assessment of surface and groundwater resources of Awka Town. SE Nigeria Water Resour 14:71–77

    Google Scholar 

  • Okeke OC, Onyekuru SO, Uduehi G, Israel HO (2011) Geology and hydrogeology of Northern Ishan district, Edo state, Southwestern Nigeria. Int Res J Geol Mining (IRJGM) 1(1):1–11

    Google Scholar 

  • Okogbue CO, Omonoma OV, Aghamelu PO (2012) Qualitative assessment of groundwater from Egbe-Mopa basement complex area, northcentral Nigeria. Environ Earth Sci 67:1069–1083. https://doi.org/10.1007/s12665-012-1552-z

    Article  ADS  CAS  Google Scholar 

  • Okoro HK, Adeyinka A, Jondiko OE, Ximba BJ, Kakalanga SJ (2012) Assessment of heavy metals contamination in groundwater: a case study of central industrial district in Ilorin, Kwara State. Nigeria Int J Phys Sci 7(28):5078–5088. https://doi.org/10.5897/IJPS12.453

    Article  CAS  Google Scholar 

  • Olobaniyi SOB, Owoyemi FB (2004) Quality of groundwater in the Deltaic Plain Sands aquifer of Warri and environs, Delta State. Nigeria Water Resour 15:38–44

    Google Scholar 

  • Olobaniyi SB, Ogala JE, Nfor NB (2007) Hydrogeochemical and bacteriology investigation of groundwater in Agbor area, southern Nigeria. J Min Geol 43(1):79–89

    Google Scholar 

  • Olufemi AG, Titilayo EA, Tunde EO (2011) Evaluation of total petroleum hydrocarbons (TPH) and some related heavy metals in soil and groundwater of Ubeji settlement, Warri Metropolis. Nigeria Terrestrial and Aquatic Environ Toxicol 6(1):61–65

    Google Scholar 

  • Omofonmwan SI, Eseigbe JO (2009) Effects of solid waste on the quality of underground water in Benin Metropolis. Nigeria J Hum Ecol 26(2):99–105

    Article  Google Scholar 

  • Omo-Irabor OO, Olobaniyi SB, Oduyemi K, Akunna J (2008) Surface and groundwater quality assessment using multivariate analytical methods: a case study of western Niger Delta. Nigeria Phy Chem Earth 33:666–673

    Article  ADS  Google Scholar 

  • Omonona O, Okogbue CO (2016) Geochemistry of rare earth elements in groundwater from different aquifers in the Gboko area, central Benue Trough, Nigeria. Environ Earth Sci 76(1). https://doi.org/10.1007/s12665-016-6329-3

  • Onoja SB, Isikwue MO, Malum JF (2017) Physico-chemical characterization of groundwater of Kaltungo, Gombe State. Nigeria Treatment for Fluoride Removal Nigerian J Technol (NIJOTECH) 36(2):655–662

    Google Scholar 

  • Onunkwo AA, Nwagbara JO, Ahiarakwem CA (2014) Assessment of heavy metals in nnewi under ground water. Int J Eng Res Dev 10(11):1–5

    Google Scholar 

  • Onwuka OS, Omonona OV, Anika OC (2013) Hydrochemical characteristics and quality assessment of regolith aquifers in Enugu metropolis, southeastern Nigeria. Environ Earth Sci 70:1135–1141. https://doi.org/10.1007/s12665-012-2200-3

    Article  ADS  CAS  Google Scholar 

  • Opara AI, Onyekuru SO, Nwokei KI (2005) Hydrogeochemical study of surface and groundwater systems in parts of Okigwe, Upper Imo River Basin. Southeastern Nigeria J Sci Engr Tech 12(2):6233–6242

    Google Scholar 

  • Oteze GE (1991) Potability of groundwater from the Rima Group aquifers in the Sokoto Basin. J Min Geol 27(1):17–24

    Google Scholar 

  • Owoso J, Azike N, Akinsanya N, Okonkwo C, Kuteyi T (2017) Heavy metal contamination of soil and groundwater by artisanal activities in Lagos Metropolis. Nigeria Int J Sci Eng Res 8(4):1344–1349

    Google Scholar 

  • Oyeku OT, Eludoyin AO (2010) Heavy metal contamination of groundwater resources in a Nigerian urban settlement. Afr J Environ Sci Technol 4(4):202–214

    Google Scholar 

  • Oyeleke PO, Okparaocha FJ (2016) Assessment of some heavy metals in groundwater in the vicinity of an oil depot in Nigeria. American Chem Sci J 12(3):1–7

    Article  Google Scholar 

  • Ozoko DC (2004) Geochemical and microbiological studies of the natural water systems in Agila, Benue State. Nigeria Water Res 15:60–65

    Google Scholar 

  • Ozoko DC (2015) Heavy metal pollution of natural waters in Abakaliki, Ebonyi State. Nigeria Int J Sci Res (IJSR) 4(6):482–486

    Google Scholar 

  • Pagano G, Guida M, Tommasi F et al (2015) Health effects and toxicity mechanisms of rare earth elements-knowledge gaps and research prospects. Ecotoxicol Environ Saf 115:40–48

    Article  CAS  PubMed  Google Scholar 

  • Pais I, Jones JB Jr (1997) The handbook of trace elements. St Lucie Press, Boca Raton, Florida, p 223

  • Pazand K (2013) Geochemical and hydrogeochemical evolution of groundwater in Ferdows area, northeast of Iran. Environ Earth Sci 71(2):685–695

    Article  ADS  Google Scholar 

  • Pekey H, Karaka D, Bakoglu M (2004) source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar Pollut Bull 49:809–818

    Article  CAS  PubMed  Google Scholar 

  • Pocock SJ, Smith M, Baghurst P (1994) Environmental lead and children’s intelligence: a systematic review of the epidemiological evidence. BMJ 309:1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popoola LT, Yusuf AS, Aderibigbe TA (2019) Assessment of natural groundwater physico-chemical properties in major industrial and residential locations of Lagos metropolis Applied Water. Science 9:191. https://doi.org/10.1007/s13201-019-1073-y

  • Prasad B, Bose JM (2001) Evaluation of the heavy metal pollution index for surface and spring water near a Limestone mining area of the lower Himalayas. Environ Geol 41(1–2):183–188

    Article  ADS  CAS  Google Scholar 

  • Rahman MA, Rahman A, Kaiser MZ, Renzaho AMN (2018) Ecotoxicol Environ Saf 150(January):335–343

  • Ramos SJ, Dinali GS, Oliveira C et al (2016) Rare earth elements in the soil environment. Cur Pollu Rep 2(1):28–50

    Article  CAS  Google Scholar 

  • Rani A, Kumar A, LaI A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a revew. Int J Environ Health Res 24(4):378–399

    Article  CAS  PubMed  Google Scholar 

  • Rasool B, Mahmood-ur-Rahman Zubair M et al (2022) Synergetic efficacy of amending Pb-polluted soil with P-loaded jujube (Ziziphus mauritiana) twigs biochar and foliar chitosan application for reducing Pb distribution in Moringa leaf extract and improving its anti-cancer potential. Water Air Soil Pollut 233:344. https://doi.org/10.1007/s11270-022-05807-2

  • Reddy VH, Prasad PMN, Reddy AVR, Reddy YVR (2012) Determination of heavy metals in surface and groundwater in and around Tirupati, Chittoor (Di), Andhra Pradesh. India Der Pharma Chemica 4(6):2442–2448

    CAS  Google Scholar 

  • Reimann C, Caritat P (1988) Chemical elements in environment. Fact sheets for geochemists and environmental scientist, Berlin, Springer

  • Rice EW, Baird RB, Eaton AD, Clesceri LS (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington DC

  • Rijswljk K (1981) Small community water supplies. IRT Technical Paper Series no. 18, Netherland

  • Sanusi KA, Hassan MS, Abbas MA, Kura AM (2017) Assessment of heavy metals contamination of soil and water around abandoned Pb-Zn mines in Yelu, Alkaleri Local Government Area of Bauchi State. Nigeria Int Res J Publ Environ Health 4(5):72–77

    Google Scholar 

  • Sarkar A, Paul B (2016) Chemosphere 158:37–49

  • Shand P, Edmunds WM, Lawrence AR, Smedley PL, Burke S (2007) The natural (baseline) quality of groundwater in England and Wales. British Geological Survey Research Report No. RR/07/06 (20) (PDF) Assessment of natural groundwater physico-chemical properties in major industrial and residential locations of Lagos metropolis. Available from: https://www.researchgate.net/publication/336622406_Assessment_of_natural_groundwater_physicochemical_properties_in_major_industrial_and_residential_locations_of_Lagos_metropolis. Accessed 27 Feb 2022

  • Shanker S, Shanker U, Shikha (2014) Science World Journal pp 304–324

  • Sholkovitz ER (1992) Chemical evolution of rare earth elements: fractionation between colloidal and solution phases of filtered river water. Earth Planetary Sci Letter 114:77–84. https://doi.org/10.1016/0012-821X(92)90152-L

    Article  ADS  CAS  Google Scholar 

  • Sholkovitz ER, Elderfield H (1988) The cycling of rare earth elements in Chesapeake Bay. Global Biogeochem Cycles 2:157–176

    Article  ADS  CAS  Google Scholar 

  • Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, Berlin, p101

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Ecotoxicol Environ Saf 112:247–270

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Sharma A, Verma RK, Chopade RL, Pandit PP, Nagar V, Aseri V, Choudhary SK, Awasthi G, Awasthi KK, Sankhla (2022) Heavy metal contamination of water and their toxic effect on living organisms. https://doi.org/10.5772/intechopen.105075

  • Smedley PL (1991) The geochemistry of rare earth elements in groundwater from Carnmenellis area, southwest England. Geochim Cosmochim Acta 55:2767–2779

    Article  ADS  CAS  Google Scholar 

  • Soladoye O, Ajibade LT (2014) A groundwater quality study of Lagos State, Nigeria International. J Appl Sci Technol 4(4):271–281

    Google Scholar 

  • Sridhar SGD, Sakthivel AM, Sangunathan UM, Jenefer S, Mohamed Rafik M (2017) Kanagaraj G (2017) Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai, Tamil Nadu. India Appl Water Sci 7:4651–4662. https://doi.org/10.1007/s13201-017-0628-z

    Article  ADS  CAS  Google Scholar 

  • Tamasi G, Cini R (2004) Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Sci Total Environ 327:41–51

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tamunoberetonari I, Omubo-Pepple T-A (2010) Speciation of heavy metals (Cu, Pb, Ni) pollutants and the vulnerability of groundwater resource in Okirika of Rivers State, Nigeria. American J Sci Indust Res 2(1):69–77. https://doi.org/10.5251/ajsir.2011.2.69.77

    Article  Google Scholar 

  • Tang J, Johannesson KH (2006) Controls on geochemistry of rare earth elements along a groundwater flow path in the Carrizo Sand aquifer, Texas USA. Chem Geol 225:156–171

    Article  ADS  CAS  Google Scholar 

  • Tauqeer HM, Turan V, Farhad M, Iqbal M (2022a). Sustainable agriculture and plant production by virtue of biochar in the era of climate change. In: Hasanuzzaman, M., Ahammed, G.J., Nahar, K. (eds) Managing Plant Production Under Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-5059-8_2

  • Tauqeer HM, Turan V, Iqbal M (2022b). Production of safer vegetables from heavy metals contaminated soils: the current situation, concerns associated with human health and novel management strategies. In: Malik, J.A. (eds) Advances in Bioremediation and Phytoremediation for Sustainable Soil Management. Springer, Cham. https://doi.org/10.1007/978-3-030-89984-4_19

  • Tavares T, Bertolo R, Fiúme B, Crespi A, Martins V, Hirata R (2015) Hydrochemical investigation of barium in the public water supply wells of Sao Paulo state, southern Brazil. Environ Earth Sci 74:6599–6612. https://doi.org/10.1007/s12665-015-4661-7

    Article  ADS  CAS  Google Scholar 

  • Thakur M, Deb MK, Imai S, Suzuki Y, Ueki K, Hasegawa A (2004) Load of heavy metals in the airborne dust particulates of an urban city of Central India. Environ Monit Assess 95(1–3):257–268. https://doi.org/10.1023/B:EMAS.0000029907.96562.af

    Article  CAS  PubMed  Google Scholar 

  • Tijani MN, Onibalusi SO, Olatunji AS (2002) Hydochemical and environmental impact assessment of Orita Aperin waste dumpsite, Ibadan, southwestern Nigeria. Water Res 13:78–84

    Google Scholar 

  • Turan V (2021) Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. Physiol Plant 173(1):418–429. https://doi.org/10.1111/ppl.13490

  • Turan V, Pia Muhammad AR, Qasim A, Farhat A, Muhammad I, Ayesha I, Waqas-ud-Din K (2018) Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Arch Agron Soil Sci 64:8:1053–1067. https://doi.org/10.1080/03650340.2017.1410542

  • Ukiwe LN, Onyedika GO, Uche VI, Lwu CI (2012) physicochemical water quality indicators of groundwater in Ishiagu, Ebonyi State. Nigeria Terrestrial Environ Toxicol 6(1):55–60

    Google Scholar 

  • USEPA (1989) Risk assessment guidance for superfund, vol 1: human health evaluation manual (part A) (EPA/5401/1–89/002: interim final). Washington DC: Office of Emergency and Remedial Response

  • USEPA (1991) Role of baseline risk assessment in superfund remedy selection decisions. OSWER Directive 9355.0–30. Office of Solid Waste and Emergency Response, Washington DC, USA

  • USEPA (1995) Technical factsheet on nickel. US Environmental Protection Agency, Washington

  • USEPA (2005) Guidelines for carcinogenic risk assessment. Risk assessment forum, Washington DC. EPA/630/P-03/001/F

  • USEPA (2009) Risk assessment guidance for superfund volume I: human health evaluation manuel (Part F, Supplemental guidance for inhalation risk assessment), Final. Office of superfund remediation and technology innovation, OSWER Directive 9285, 7–82, EPA-540-R-070–002, USEPA, Washington DC, USA

  • USEPA IRIS (US Environmental Protection Agency)’s Integrated Risk Information System) (2011). https://www.epa.gov/iris/. Environmental Protection Agency Region I, Washington DC 20460 

  • USEPA (2012) Report drinking water standards and health advisories. Washington DC

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Vetrimurugan E, Brindha K, Elango L, Ndwandwe OM (2016) Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta Appl Water Sci 6:3267–3280. https://doi.org/10.1007/s13201-016-0472-6

  • Vetrimurugan E, Brindha K, Elango L, Ndwandwe OM (2017) Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Appl Water Sci. https://doi.org/10.1007/s13201-016-0472-6

  • Veysel T (2021) Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. Physiol Plant 173(1):418–429. https://doi.org/10.1111/ppl.13490

    Article  CAS  Google Scholar 

  • Veysel T (2022) Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant. Int J Phytorem 24(2):166–176. https://doi.org/10.1080/15226514.2021.1929826

    Article  CAS  Google Scholar 

  • Veysel T, Ramzani PMA, Ali Q, Abbas F, Iqbal M, Irum A, Khan W-u-D (2018) Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Archives Agronomy Soil Sci 64(8):1053–1067. https://doi.org/10.1080/03650340.2017.1410542

    Article  CAS  Google Scholar 

  • Wagh VM, Panaskar DB, Mukate SV, GaikwadMuley SKAA, Varade AM (2018) Health risk assessment of heavy metal contamination in groundwater of Kadava River Basin, Nashik, India. Model Earth Syst Environ 4:969–980

    Article  Google Scholar 

  • Wang Y, Xu W, Luo Y, Ma L, Li Y, Yang S, Huang K (2009) Bioeffects of chromium (III) on growth of Spirulina platensis and its biotransformation. J Sci Food Agric 89(6):947–952

    Article  CAS  Google Scholar 

  • Wang X, Lin YS, Liu DW et al (2012) Cerium toxicity, up-take and translocation in Arabidopsis thaliana seedlings. J Rare Earth 30(6):579–785

    Article  CAS  Google Scholar 

  • Ward NI (1995) Trace elements. In FW Fifield, Haines PJ (eds) Environmental analytical chemistry. Chapman and hall: blackie academic and professional

  • Watt GC, Britton A, Gilmour HG, Moore MR, Murray GD, Robertson SJ (2000) Public health implications of new guidelines for lead in drinking water: a case study in an area with historically high water lead levels. Food Chem Toxicol 38:S73–S79

    Article  CAS  PubMed  Google Scholar 

  • Welch AH (2003) Arsenic in groundwater. Kluwer, Dordrecht

  • WHO (2000a) Vanadium. air quality guidelines - Second Edition WHO Regional Office for Europe, Copenhagen, Denmark, 2000

  • WHO (2000b) WHO Regional Office for Europe. Denmark, Copenhagen

  • WHO (World Health Organization) (2004) Guidelines for drinking water quality, 3rd edn http://www.who.int/water_sanitation_health/dwq/guidelines/en

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

  • WHO (2019) Ten chemicals of major public health concern. https://www.who.int/ipcs/assessment/public_health/chemicals_phc/en/. Accessed on 17 Oct 2019

  • WSIS, Water Stewardship Information series (2007) Iron and manganese in groundwater. https://www.rdn.bc.ca/cms/wpattachments/wpID2284atID3808.pdf. Accessed 20 Aug 2019

  • Wu J, Sun Z (2016) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, Mid-west China. Exposure and Health 8:311–329. https://doi.org/10.1007/s12403-015-0170-x

    Article  CAS  Google Scholar 

  • Wu J, Li P, Qian H (2012) Study on the hydrogeochemistry and noncarcinogenic health risk induced by fluoride in Pengyang County. China Int J Environ Sci 2(3):1127–1134

    CAS  Google Scholar 

  • Yang CL, Guo RP, Yue QL, Zhou K, Wu ZF (2013) Environmental quality assessment and spatial pattern of potentially toxic elements in soils of Guangdong Province, China. Environmental Earth Science 70:1903–1910

    Article  ADS  CAS  Google Scholar 

  • Yousaf B, Amina LG, Wang R, Imtiaz M, Rizwan MS, Zia-Ur-Rehman M et al (2016) The importance of evaluating metal exposure and predicting human health risks in urban-periurban environments influenced by emerging industry. Chemosphere 150:79–89. https://doi.org/10.1016/j.chemosphere.2016.02.007

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yusuf AK, Alkali SC (2018) Variation of groundwater parameters through west to east central profile section in Mubi Town, Northeastern Nigeria. Am J Water Res 6(3):112–122. https://doi.org/10.12691/ajwr-6-3-2

    Article  CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  • Zhang WG, Feng H, Chang JN, Qu JG, Xie HX, Yu LZ (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an as-sessment from different indexes Environ Pollut 157(5):1533–1543. (8) (PDF) Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Available from https://www.researchgate.net/publication/288701256_Sources_identification_and_pollution_evaluation_of_heavy_metals_in_the_surface_sediments_of_Bortala_River_Northwest_China. Accessed 14 Mar 2022

  • Zhang X, Yang I, Li Y, Li H, Wang W, Ye B (2012) Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ Monit Assess 184:2261–2273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Alexander von Humboldt, Bonn, for fellowship to AE during part of this work in Freiberg, Germany. Prof BJ Merkel, my host at the University of Freiberg and putting the facilities of the institute at my disposal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniekan Edet.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Amjad Kallel

Aniekan Edet is formerly affiliated with Department of Geology, University of Calabar, Calabar, Nigeria.

Highlights

Distribution, concentration, and source of trace and rare earth elements in groundwater.

Comparison of recent and historical data.

Assessment of non-carcinogenic and carcinogenic risk.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudamnya, E.A., Edet, A. A comparison assessment of trace and rare earth elements concentration and associated health risk in groundwater from northcentral and southeastern Nigeria. Arab J Geosci 17, 86 (2024). https://doi.org/10.1007/s12517-024-11891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-024-11891-x

Keywords

Navigation