Skip to main content

Advertisement

Log in

Unsaturated soil slope properties and shallow landslides development in Souk Ahras area, NE, Algeria

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Shallow landslides in Souk Ahras region, NE Algeria, occur usually after prolonged rainfall events. Three localities which are Zaarouria, Hammam Tassa, and Mechroha were chosen to study these landslides and the conditions of their occurrences. They have been observed to affect mainly agricultural lands, main supplies, and the road network. This paper aims to find the relationship between the rainfall, the soil engineering properties, the geology, and the geomorphology. A number of field trips were organized to the study areas where landslide masses were described and mapped as well as some field measurement such as natural moisture content and sampling. In the laboratory, we establish gain size distribution, Atterberg limits, density, and effective cohesion and internal friction. Then we established the unsaturated soil property functions such as the soil water characteristic curve (SWCC) and the hydraulic function. The stability computation was undertaken using, GeoStudio software 2020, a coupled analysis where the Seep/W simulates the seepage and the Slope/W for the safety factor. The results show that the sector study containing: silty sand (SM), well graded sand with silt and gravel (SW-SM), and clayey sand with Gravel (SC) while hydraulic conductivity varies between 4.5. 10−6 for 4.10−5 and 10−3 m/s. The factor of safety varies between 0.8, 1.16, and 0.8. In conclusion, our study confirms the field observations as shallow landslides have been numerous in mars 2019 when rainfall reaches 110 mm. Moreover, high permeability soils, in Mechrouha, show a more dramatic decrease in the factor of safety as the 100 = -mm rainfall amount is reached while it decreases gradually for the other two less permeable soils of Zaarouria and Hammam Tassa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Acharya KP, Bhandary NP, Dahal RK, Yatabe R (2016) Seepage and slope stability modelling of rainfall-induced slope failures in topographic hollows. Geomat Nat Haz Risk 7(2):721–746. https://doi.org/10.1080/19475705.2014.954150

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env 58:21–44. https://doi.org/10.1007/s100640050066

    Article  Google Scholar 

  • Ali A, Huang J, Lyamin AV, Sloan SW, Cassidy MJ (2014) Boundary effects of rainfall-induced landslides. Comput Geotech 61:341–354. https://doi.org/10.1016/j.compgeo.2014.05.019

    Article  Google Scholar 

  • Alves ME, Omotoso O, Anderson MA, Antoni M, Rossen J, Martirena F, Scrivener KL, Avet F, Snellings R, Alujas Diaz A, Ben Haha M, Scrivener KL, Barrer RMM, Jones DL, Mainwaring DE, Bediako M, Gawu SK, Adjaottor AA, Solomon Ankrah J, … Karstunen M (2016) Correlation of the undrained shear strength and plasticity index of tropical clays. Cement Concrete Res, 6(1), 1–11

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • Arabameri A, Pradhan B, Rezaei K, Lee CW (2019) Assessment of landslide susceptibility using statistical- and artificial intelligence-based FR-RF integrated model and multiresolution DEMs. Remote Sensing, 11(9). https://doi.org/10.3390/rs11090999

  • Atiali JR (1998) Avant propos. Diabetes Metab 24(SUPPL. 3):5–6

    Google Scholar 

  • Augusto Filho O, Fernandes MA (2019) Landslide analysis of unsaturated soil slopes based on rainfall and matric suction data. Bull Eng Geol Env 78(6):4167–4185. https://doi.org/10.1007/s10064-018-1392-5

    Article  Google Scholar 

  • Azmi M, Ramli MH, Hezmi MA, Mohd Yusoff SAN, Alel MNA (2019) Estimation of soil water characteristic curves (SWCC) of mining sand using soil suction modelling. IOP Conference Series: Materials Science and Engineering, 527(1). https://doi.org/10.1088/1757-899X/527/1/012016

  • Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Proc Land 26:1251–1263. https://doi.org/10.1002/esp.263

    Article  Google Scholar 

  • Baum RL, Godt JW (2010) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7(3):259–272. https://doi.org/10.1007/s10346-009-0177-0

    Article  Google Scholar 

  • Beguerıa S (2006) Changes in land cover and shallow landslide activity: a case study in the Spanish Pyrenees. Geomorphology 74:196–206. https://doi.org/10.1016/j.geomorph.2005.07.018

    Article  Google Scholar 

  • Bousta M, Ait Brahim L (2018) Weights of evidence method for landslide susceptibility mapping in Tangier. Morocco MATEC Web of Conferences 149:02042. https://doi.org/10.1051/matecconf/201814902042

    Article  Google Scholar 

  • Bozhinova-Haapanen A (2016) Stabilizing the Landslide on Road E87 Burgas - Malko Tarnovo, Bulgaria. Procedia Engineering, 143(Ictg), 650–657. https://doi.org/10.1016/j.proeng.2016.06.092

  • Bozo L, Cela K (2016) Problems with landslide stabilization of Dukat in the Road Vlora – Saranda. Procedia Engineering, 143(Ictg), 1435–1442. https://doi.org/10.1016/j.proeng.2016.06.169

  • Brabb EE (1991) The world landslide problem. Episodes 14(1):52–61

    Article  Google Scholar 

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Natural Hazards and Earth System Sciences Rainfall thresholds for the possible occurrence of landslides in Italy. In Hazards Earth Syst. Sci (Vol. 10). www.nat-hazards-earth-syst-sci.net/10/447/2010/

  • Budimir MEA, Atkinson PM, Lewis HG (2015) A systematic review of landslide probability mapping using logistic regression. Landslides 12:419–436. https://doi.org/10.1007/s10346-014-0550-5,2

    Article  Google Scholar 

  • Campbell RH (1975) Soil slips, debris flows, and rainstorms in the Santa Monica mountains and vicinity, Southern California. U.S. Geological Survey Professional Paper 851, 51 pages. http://pubs.usgs.gov/pp/0851/report.pdf

  • Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29(2):262–273. https://doi.org/10.1017/S0021859600051789

    Article  Google Scholar 

  • Castro CD, Lombardo L, Martin MP, Dou J, Huser R (2017) Handling high predictor dimensionality in slope unit based landslide susceptibility models through LASSO-penalized Generalized Linear Model. Environ Model Soft 97:145–156. https://doi.org/10.1016/j.envsoft.2017.08.003

    Article  Google Scholar 

  • Çellek S (2013) Landslide susceptibility analysis of Sinop-Gerze region, Doctora Thesis (in Turkish), KTU, Turkey

  • Çellek S (2020) Effect of the slope angle and its classification on landslide, Nat Hazards Earth Syst Sci. 10.5194/nhess-2020-87, 2020

  • Cevasco A, Robbiano A, Sacchini A, Vincenzi E (2008) Hydrological thresholds for triggering shallow landslides in the area of the Municipality of Genoa: the case study of the Bisagno Valley. Rendiconti Online Societa` Geologica Italiana 3(1):212–213

  • Cevasco A, Pepe G, Brandolini P (2014) (2013): The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bull Eng Geol Environ 73:859–875. https://doi.org/10.1007/s10064-013-0544-x

    Article  Google Scholar 

  • Chen CW, Chen H, Wei LW, Lin GW, Iida T, Yamada R (2017) Evaluating the susceptibility of landslide landforms in Japan using slope stability analysis: a case study of the 2016 Kumamoto earthquake. Landslides 14(5):1793–1801. https://doi.org/10.1007/s10346-017-0872-1

    Article  Google Scholar 

  • Chen H, Lee CF (2004) Geohazards of slope mass movement and its prevention in Hong Kong. Eng Geol 76(1–2):3–25. https://doi.org/10.1016/j.enggeo.2004.06.003

    Article  Google Scholar 

  • Chinkulkijniwat A, Yubonchit S, Horpibulsuk S, Jothityangkoon C, Jeeptaku C, Arulrajah A (2016) Hydrological responses and stability analysis of shallow slopes with cohesionless soil subjected to continuous rainfall. Can Geotech J 53(12):2001–2013. https://doi.org/10.1139/cgj-2016-0143

    Article  Google Scholar 

  • Cohen AS, Coe AL, Harding SM, Schwark L (2004) Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32(2):157–160. https://doi.org/10.1130/G20158.1

    Article  Google Scholar 

  • Crosta GB, Dal Negro P, Frattini P (2003) Soil slips and debris flows on terraced slopes. Nat Hazards Earth Syst Sci 3(1/2):31–42. https://doi.org/10.5194/nhess-3-31-2003

    Article  Google Scholar 

  • Dağ S (2007) Landslide susceptibility analysis of Çayeli (Rize) and its surranding by statistical methods, Doctora Thesis (in Turkish), KTU, Turkey

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K (2009) Failure characteristics of rainfall-induced shallow landslides in granitic terrains of Shikoku Island of Japan. Environ Geol 56(7):1295–1310. https://doi.org/10.1007/s00254-008-1228-x

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS Lantau Island, Hong Kong. Geomorphology 42:213–238

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87. https://doi.org/10.1016/S0013-7952(01)00093-X

  • Dante Fratta, Jennifer Aguettant LR-S (2007) Introduction to soil mechanics laboratory testing by Dante Fratta, Jennifer Aguettant, Lynne Roussel-Smith (z-lib.org).pdf (p. 246 pages). http://www.taylorandfrancis.com

  • David L (1956) Etude géologique des Monts de la Haute Medjerda. Thesis sc. Paris, PSCGANS, bull. N° 11, 289 pp

  • De Vita P, Allocca V, Manna F, Fabbrocino S (2012) Coupled decadal variability of the North Atlantic Oscillation, regional rainfall and karst spring discharges in the Campania region (southern Italy). Hydrol Earth Syst Sci 16(5):1389–1399. https://doi.org/10.5194/hess-16-1389-2012

    Article  Google Scholar 

  • Di Crescenzo G, Santo A (2005) Debris slides–rapid earth flows in the carbonate massifs of the Campania region (Southern Italy): morphological and morphometric data for evaluating triggering susceptibility. Geomorphology 66(1–4):255–276. https://doi.org/10.1016/J.GEOMORPH.2004.09.015

    Article  Google Scholar 

  • Dirkx WJ, van Beek R, Bierkens M (2020) The influence of grain size distribution on the hydraulic gradient for initiating backward erosion. Water (Switzerland), 12(9). https://doi.org/10.3390/w12092644

  • Dölek İ, Avcı V (2016) Determination of areas with landslide susceptibility in Arguvan district (Malatya province) and its surrounding by multi-criteria decision analysis method (MDAM). J Acad Soc Sci 4(33):106–129

    Google Scholar 

  • Dolzyk K, Chmielewska I (2014) Predicting the coefficient of permeability of non-plastic soils. Soil Mech Found Eng 51(5):213–218. https://doi.org/10.1007/s11204-014-9279-3

    Article  Google Scholar 

  • Drewa PB, Platt WJ, Moser EB (2002) Community structure along elevation gradients in headwater regions of longleaf pine savannas. Plant Ecol 160(1):61–78. https://doi.org/10.1023/A:1015875828742

    Article  Google Scholar 

  • Echeverri O, Valencia Y (2004) Analysis of landslides in the basin of the Iguana river from Medellín city based on rainfall-slope-geological formation interaction. Dyna 71(142):33–45

    Google Scholar 

  • Ephrem G (2019) Characteristics of grain size distribution and the shear strength analysis of Chenjiaba long runout. Coseismic Landslide 16:2110–2125

    Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343. https://doi.org/10.1016/j.geomorph.2004.09.025

    Article  Google Scholar 

  • Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 129(3–4):376–386. https://doi.org/10.1016/j.geomorph.2011.03.001

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) (2000): Comparing landslide maps: a case study in the upper Tiber River Basin Central Italy. Environ Manag 25(3):247–363

    Article  Google Scholar 

  • Fredlund DG, Zhang F (2013) Combination of shrinkage curve and soil-water characteristic curves for soils that undergo volume change as soil suction is increased. In: 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 2, pp 1109–1112

    Google Scholar 

  • Fredlund DG, Rahardjo H, Fredlund MD (2012) Unsaturated soil mechanics in engineering practice. John Wiley & Sons, Inc

  • Fredlund MD, Wilson GW (2020) Indirect procedures to determine unsaturated soil property functions, Proceedings of the 50 Canadian Geotechnical Confere. April

  • Fredlund MD, Fredlund DG, Wilson GW (n.d.) Prediction of the soil-water characteristic curve from grain-size distribution and volume-mass properties

  • Galve JP, Cevasco A, Brandolini P, Soldati M (2015) Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 12:101–114. https://doi.org/10.1007/s10346-014-0478-9

    Article  Google Scholar 

  • GeoSlope International Ltd. (2004a) Seep/W user’s guide for finite element Seepag Analysis. GEO-SLOPE International Ltd, Calgary, Alta

  • GeoSlope International Ltd. (2004b) Seep/W User’s guide for slope stability analysis. GEO-SLOPE International Ltd, Calgary, Alta

  • GeoStudio 2020 by GEOSLOPE International Ltd (2020) Retrieved February 19, 2023, from https://geostudio-2020.software.informer.com/download/

  • Goetz JN, Brenning A, Petschko H, Leopold P (2015) Evaluating machine learning and statistical prediction techniques for landslide susceptibility modelling. Comput Geosci 81:1–11. https://doi.org/10.1016/j.cageo.2015.04.007

    Article  Google Scholar 

  • Greco R, Guida A, Damiano E, Olivares L (2010) Soil water content and suction monitoring in model slopes for shallow flowslides early warning applications. Phys Chem Earth 35:127–136. https://doi.org/10.1016/j.pce.2009.12.003

    Article  Google Scholar 

  • Grelle G, Revellino P, Donnarumma A, Guadagno FM (2011) Bedding control on landslides: a methodological approach for computer-aided mapping analysis. Nat Hazards Earth Syst Sci 11(5):1395–1409. https://doi.org/10.5194/nhess-11-1395-2011

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Hadji R, Achour Y, Hamed Y (2018) Using GIS and RS for slope movement susceptibility mapping: Comparing AHP, LI and LR methods for the Oued Mellah Basin, NE Algeria. In: Advances in Science, Technology and Innovation. Springer Nature, pp 1853–1856. https://doi.org/10.1007/978-3-319-70548-4_536

    Chapter  Google Scholar 

  • Hadji R, Boumazbeur A, Limani A, Beghem Y, Chouabi M, demdoum A, (2013) Geologic, topographic and climatic controls on landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quat Int 302:224–237

    Article  Google Scholar 

  • Hansen A (1984a) Strategies for classification of landslides. In: Prior DB (ed) BrunsdenD. Slope Instability. Wiley, New York, pp 523–602

    Google Scholar 

  • Hansen A (1984b) Engineering geomorphology: the application of an evolutionary model of Hong Kong. Z Geomorphol 51(1984):39–50

    Google Scholar 

  • Harmoko U, Yuliyanto G, Yulianto T (2020) Vulnerability assessment in landslide risk analysis. Int J Recent Trends Eng Res 6(5):7–13. https://doi.org/10.23883/ijrter.2020.6026.hl2zm

    Article  Google Scholar 

  • Hasegawa S, Dahal RK, Nishimura T, Nonomura A, Yamanaka M (2009) DEM-Based analysis of earthquake-induced shallow landslide susceptibility. Geotech Geol Eng 27(3):419–430. https://doi.org/10.1007/s10706-008-9242-z

    Article  Google Scholar 

  • Hasekioğulları GD (2011) Assessment of parameter effects in producing landslide susceptibility maps, Master Thesis (in Turkish), Hacettepe University, Turkey

  • Hidalgo CH, de Assis AP (2013) A rainfall threshold for the occurrence of landslides in manmade slopes in residual soils in the northwest of Colombia. Advances in Unsaturated Soils 579–584. https://doi.org/10.1201/B14393-86/RAINFALL-THRESHOLDOCCURRENCE-LANDSLIDES-MANMADE-SLOPES-RESIDUAL-SOILS-NORTHWESTCOLOMBIA-HIDALGO-DE-ASSIS

  • Hidalgo CA, Vega JA, Obando MP (2018) Effect of the rainfall infiltration processes on the landslide hazard assessment of unsaturated soils in tropical mountainous regions. In Engineering and Mathematical Topics in Rainfall. InTech. https://doi.org/10.5772/intechopen.70821

  • Intarawichian N, Dasananda S (2010) Analytical hierarchy process for landslide susceptibility mapping in lower mae chaem watershed, northern thailand. In Suranaree J Sci Technol 17(3):277–292

    Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910. https://doi.org/10.1029/2000WR900090

    Article  Google Scholar 

  • Iverson RM, Major JJ (1986) Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization. Water Resources Research 22(11):1543–1548. https://doi.org/10.1029/WR022I011P01543

  • Jeong S, Lee K, Kim J, Kim Y (2017) Analysis of rainfall-induced landslide on unsaturated soil slopes. Sustainability (Switzerland) 9(7):1280. https://doi.org/10.3390/su9071280

    Article  Google Scholar 

  • Klimeš J, Escobar VR (2010) A landslide susceptibility assessment in urban areas based on existing data: an example from the Iguaná Valley, Medellín City, Colombia. Natural Hazards Earth Syst Sci 10(10):2067–2079. https://doi.org/10.5194/nhess-10-2067-2010

    Article  Google Scholar 

  • Ko FW (2005) Correlation between rainfall and natural terrain landslide occurrence in Hong Kong. Geotech Eng 168:77

    Google Scholar 

  • Ku CY, Liu CY, Xiao JE, Yeih W (2017) Transient modeling of flow in unsaturated soils using a novel collocation meshless method. Water (Switzerland), 8(12). https://doi.org/10.3390/w9120954

  • L AB, Bousta M, Jemmah IA, I EH, Elmahsani A, Abdelouafi A, Sossey F, Lallout I (2018) Landslide susceptibility mapping using AHP method and GIS in the peninsula of Tangier ( Rif-northern morocco ) Landslide susceptibility mapping using AHP method and GIS in the peninsula of Tangier ( Rif-northern morocco ). MATEC Web of Conferences 149:02084. https://doi.org/10.1051/matecconf/201814902084

  • Lee ML, Gofar N, Rahardjo H (2009) A simple model for preliminary evaluation of rainfall-induced slope instability. Eng Geol 108(2009):272–285

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26:1477–1491. https://doi.org/10.1080/01431160412331331012

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302. https://doi.org/10.1016/S0013-7952(03)00142-X

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lin WT, Lin CY, Chou WC (2006) Assessment of vegetation recovery and soil erosion at landslides caused by a catastrophic earthquake: a case study in Central Taiwan. Ecol Eng 28(1):79–89. https://doi.org/10.1016/j.ecoleng.2006.04.005

  • Lu N, Godt JW, Wu DT (2010) A closed-form equation for effective stress in unsaturated soil. Water Resour Res 46(5):1–14. https://doi.org/10.1029/2009wr008646

    Article  Google Scholar 

  • Marjanovic M, Kova_cevic M, Bajat B, Vozenılek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol. 123:225–234https://doi.org/10.1016/j.enggeo.2011.09.006

  • McCalpin J (1984) Preliminary age classification of landslides for inventory mapping, Proceedings 21st annual Engineering Geology and Soils Engineering Symposium. University Press, Moscow, Idaho, pp 99–111

    Google Scholar 

  • McKenna JP, Santi PM, Amblard X, Negri J (2012) Effects of soil-engineering properties on the failure mode of shallow landslides. Landslides 9(2):215–228. https://doi.org/10.1007/s10346-011-0295-3

    Article  Google Scholar 

  • MacRobert CJ, Blight GE (2013) A field study of the in situ moistureregime during active hydraulic tailings deposition. J South Afric Instit Civil Eng 55(3):57–68. http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-20192013000300007&lng=en&nrm=iso&tlng=en.

  • Mehrotra R, Namuduri K, Ranganathan N (1992) Gabor filter-based edge detection. Pattern Recogn 25(12):1479–1494. https://doi.org/10.1016/0031-3203(92)90121-X

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171. https://doi.org/10.1029/93WR02979

    Article  Google Scholar 

  • Montrasio L, Schilirò IL, Terrone IA, (2016) Physical and numerical modelling of shallow landslides, 13, pages873–883, https://doi.org/10.1007/s10346-015-0642-x

  • Montrasio L, Valentino R (2008) A model for triggering mechanisms of shallow landslides. System Sciences, 1149–1159

  • Moser M, Hohensinn F (1983) Geotechnical aspects of soil slips in alpine regions. Eng Geol 19:185–211. https://doi.org/10.1016/0013-7952(83)90003-0

    Article  Google Scholar 

  • Nations U (2003) Human Development Report 2003. Hum Dev Rep

  • Ng CWW, Zhan LT, Bao CG, Fredlund DG, Gong BW (2003) Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltration. Géotechnique 53(2):143–157. https://doi.org/10.1680/geot.53.2.143.37272

    Article  Google Scholar 

  • Nishimura T, Fredlund DG, (2000) Relationship between shear strength and matric suction in an unsaturated silty soil. Proceedings of the Asian Conference on Unsaturated Soils, UNSAT ASIA 2000 Singapore, May 18 – 19, 2000

  • Ohlmacher CG, Davis CJ (2003) Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Persichillo MG, Bordoni M, Meisina C, Bartelletti C, Barsanti M, Giannecchini R, D’Amato AG, Galanti Y, Cevasco A, Brandolini P (2016) Shallow landslides susceptibility assessment in different environments. Geomat Nat Hazards Risk 8:748–771. https://doi.org/10.1080/19475705.2016.1265011

    Article  Google Scholar 

  • Pham BT, Bui DT, Prakash I, Dholakia MB (2017) Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 149:52–63. https://doi.org/10.1016/j.catena.2016.09.007

    Article  Google Scholar 

  • Pham HQ, Fredlund DG (2008) Equations for the entire soil-water characteristic curve of a volume change soil. Can Geotech J 45(4):443–453. https://doi.org/10.1139/T07-117

    Article  Google Scholar 

  • Piacentini D, Troiani F, Soldati M, Notarnicola C, Savelli D, Schneiderbauer S, Strada C (2012) Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology 151–152:196–206. https://doi.org/10.1016/j.geomorph.2012.02.003

    Article  Google Scholar 

  • Pramusandi S, Rifa’i A, Suryolelono KB, (2015) Determination of unsaturated soil properties and slope deformation analysis due to the effect of varies rainfall. Procedia Eng 125:376–382. https://doi.org/10.1016/j.proeng.2015.11.090

    Article  Google Scholar 

  • Rahardjo H, Ong TH, Rezaur RB, Leong EC (2007) Factors controlling instability of homogeneous soil slopes under rainfall. J Geotech Geoenviron Eng 133(12):1532–1543. https://doi.org/10.1061/(asce)1090-0241(2007)133:12(1532)

    Article  Google Scholar 

  • Rahardjo H, Li XW, Toll DG, Leong EC (2001) The effect of antecedent rainfall on slope stability. Geotech Geol Eng 19(3–4):371–399. https://doi.org/10.1023/A:1013129725263

  • Rahardjo H, Kim Y, Satyanaga A (2019) Role of unsaturated soil mechanics in geotechnical engineering. Intl J Geo-Eng, 1–23. https://doi.org/10.1186/s40703-019-0104-8

  • Ran Q, Hong Y, Li W, Gao J (2018) A modelling study of rainfall-induced shallow landslide mechanisms under different rainfall characteristics. J Hydrol 563:790–801. https://doi.org/10.1016/j.jhydrol.2018.06.040

    Article  Google Scholar 

  • Rengers N (1973) Landslides and their control. In Engineering Geology (Vol. 7, Issue 3). https://doi.org/10.1016/0013-7952(73)90037-9

  • Revellino P, Grelle G, Donnarumma A, Guadagno FM (2010) Structurally controlled earth flows of the Benevento province (Southern Italy). Bull Eng Geol Environ 69(3):487–500. https://doi.org/10.1007/s10064-010-0288-9

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 1(5):318–333. https://doi.org/10.1063/1.1745010

    Article  Google Scholar 

  • Sassa K, Canuti P, Yin Y (2014) Landslide science for a safer geoenvironment. Lands Sci Safer Geoenviron 1:1–486. https://doi.org/10.1007/978-3-319-04999-1

    Article  Google Scholar 

  • Schilirò L, Cevasco A, Esposito CS, Mugnozza G (2018) Shallow landslide initiation on terraced slopes: inferences from a physically-based approach. Geomat Nat Haz Risk 9(1):295–324. https://doi.org/10.1080/19475705.2018.1430066

    Article  Google Scholar 

  • Suryo, Eko Andi, Gallage, Chaminda, & Trigunarsyah, Bambang (2015) A method for predicting rain-induced instability of an individual slope. In Barnes, Paul H. & Goonetilleke, Ashantha (Eds.) The 9th Annual International Conference of the International Institute for Infrastructure Renewal and reconstruction. (8–10 July 2013), Queensland University of Technology, Brisbane, Australia, pp. 118–127

  • Süzen ML, Doyuran V (2004) (2014): A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679. https://doi.org/10.1007/s00254-003-0917-8

  • Trigila A, Iadanza C, Esposito C, Scarascia MG (2015) 2015): Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy. Geomorphology 249:119–136. https://doi.org/10.1016/j.geomorph.2015.06.001

    Article  Google Scholar 

  • Van Genuchten MT (1980) A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1

  • van Genuchten MT, Wierenga PJ (1976) Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci Soc Am J 40(4):473–480. https://doi.org/10.2136/SSSAJ1976.03615995004000040011X

  • Vila JM (1980) la chaine Alpine de l’Algerie Nord Orientale et des confins Algéro-Tunisien. These Doc. Univ. P. et M. Curie Paris VI, 665p

  • WHO (2022): https://www.who.int/health-topics/landslides#tab=tab_3

  • Wieczorek GF (1984) (1984): Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21(3):337–342

    Google Scholar 

  • Yılmaz I, Yılmaz II (2000) Evaluation of shear strength of clayey soils by using their liquidity index. In Bull Eng Geol Env (Vol. 59). Springer-Verlag 227

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13:839–856. https://doi.org/10.1007/s10346-015-0614-1

    Article  Google Scholar 

  • Zhan TLT, Jia GW, Chen YM, Fredlund DG, Li H (2013) An analytical solution for rainfall infiltration into an unsaturated infinite slope and its application to slope stability analysis. Int J Numer Anal Meth Geomech 37(12):1737–1760. https://doi.org/10.1002/nag.2106

    Article  Google Scholar 

  • Zhang H, Chen G, Zheng L, Zhang Y (2013) Mechanism of shallow rainfall-induced landslide and simulation of initiation with DDA. Proceedings of the 11th Int. Conf. on Analysis of Discontinuous Deformation, ICADD, pp 289–293. https://doi.org/10.1201/b15791-38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benabid Ibtissam.

Ethics declarations

Conflict of interest

The authors declare that they have no know competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Zeynal Abiddin Erguler

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibtissam, B., Abderrahmane, B. & Chemseddine, F. Unsaturated soil slope properties and shallow landslides development in Souk Ahras area, NE, Algeria. Arab J Geosci 16, 270 (2023). https://doi.org/10.1007/s12517-023-11277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11277-5

Keywords

Navigation