Skip to main content
Log in

Formation of quartz veins within Serginil Phyllite Group-Penjween area, Iraqi Kurdistan Region: insights from geochemical and fluid inclusion data

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This study investigates the field-relations, petrographical, and geochemical characteristics of the quartz veins, hosted within the Cretaceous-Paleogene Serginil phyllite group, occurring in the Mlay Lexaugira area — Penjween Town, Kurdistan Region northeast of Iraq. The aim is to present a genetic interpretation of the Serginil quartz veins. The studied quartz veins exhibit distinctly uniform mineral assemblages, consisting mainly of quartz, and usually having macroscopic deformation features, including folding and boudinage.

Geochemical data show that all quartz samples have SiO2 content of 88.45–97.2 wt.%, and do not depict any marked correlation with the other contained oxides. TiO2 content of quartz in the veins is very low (and usually < 50 ppm), whereas the Fe2O3 concentration is high (average > 200 ppm), suggesting that these quartz veins were formed in a low temperature fluid. The chondrite normalized pattern of quartz veins shows variable smooth, HREEn enriched, and LREEn depleted with Eu positive anomaly and Ce negative anomaly and it is resembling to those of hydrothermal origin. Fluid inclusions data and more specific the calculated salinity suggest the circulation of hydrothermal-type fluid (possibly MVT) with homogenization temperature ranging between 140 and 219 °C. This high ToC could indicate a circulation of fluids under anchimetamorphic and epithermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-Kadhimi JA, Sissakian VK, Fattah AS, And Deikran, DB (1996) Tectonic map of Iraq, scale 1: 1000 000, 2nd edit. GEOSURV, Baghdad, Iraq

  • Ague JJ (1994) Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut; I, Evidence for changes in composition and volume. Am J Sci 294(8):989–1057. https://doi.org/10.2475/ajs.294.8.989

    Article  Google Scholar 

  • Ague JJ (1997) Compositional variations in metamorphosed sediments of the Littleton Formation, New Hampshire; discussion. Am J Sci 297(4):440–449. https://doi.org/10.2475/ajs.297.4.440

    Article  Google Scholar 

  • Ankusheva NN, Palenova EE, Shanina SN (2020) Fluid inclusion evidences for the PT conditions of quartz veins formation in the black shale-hosted gold deposits, Bodaybo ore region Russia. J Earth Sci 31(3):514–522

    Article  Google Scholar 

  • Basuki NI, Spooner ETC (2002) A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Zn-Pb deposits: identifying thresholds for metal transport. Explor Min Geol 11(1–4):1–17

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in thePenge and Kuruman iron-formations, Transvaal Supergroup. South Africa. Precambrian Res 79(1–2):37–55. https://doi.org/10.1016/0301-9268(95)00087-9

  • Beurlen H, Müller A, Silva D, Da Silva MRR (2011) Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema Pegmatite Province, northeast Brazil. Mineral Mag 75(5):2703–2719

    Article  Google Scholar 

  • Blankenburg HJ, Götze J, Schulz H (1994) Quarz rohst offe. Deutscher Verlag für Grundstoffindustrie, Leipzig-Stuttgart, Germany, p 296

    Google Scholar 

  • Bodnar RJ (1983) A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids. Econ Geol 78(3):535–542. https://doi.org/10.2113/gsecongeo.78.3.535

  • Bodnar RJ, Lecumberri-Sanchez P, Moncada D, Steele-MacInnis M (2014) 13.5–Fluid inclusions in hydrothermal ore deposits. Treatise on geochemistry. 2nd edn. Elsevier, Oxford, 119, p 142

  • Boyabe M, Dawai D, Tchameni R, Tchunte PMF (2020) Petrography and mineralogy of the quartz and quartz-feldspar sulphide veins in the Pan-African Syenitic Massif of Guider (North Cameroon). Open J Geol 10(3):235–259. https://doi.org/10.4236/ojg.2020.103013

    Article  Google Scholar 

  • Brown CS, Thomas LA (1960) The effect of impurities on the growth of synthetic quartz∗. J Phys Chem Solids 13(3–4):337–343

    Article  Google Scholar 

  • Buday T (1975)The two main structural units of the Tertiary eugeosyncline of Northern Iaq., Geol. Soc. Iraq. Special Issue : 79–88

  • Buday T (1980) The regional geology of Iraq, stratigraphy and paleogeography. University of Mosul, Iraq, Dar AL-Kuttib Pub. House, p 445p

    Google Scholar 

  • Cohen A (1960) Substitutional and interstitial aluminium impurity in quartz: structure, and colour centre interrelationships. J Phys Chem Solids 13:321–325

    Article  Google Scholar 

  • Cox SC (1993) Veins, fluids, fractals, scale and schist—an investigation of fluid– rock interaction during deformation of the Torlesse Terrane, New Zealand. PhD thesis, University of Otago, Dunedin

  • Davies DW, Lowenstein TK, Spencer RJ (1990) Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2H2O, and NaCl-CaCl2H2O. Geochim Cosmochim Acta 54(3):591–601

    Article  Google Scholar 

  • Dora ML, Randive KR, Kanungo DR, Pattnaik MK, Mahapatra KC, Shareef M, Nitanware NV( 2017) Geochemistry of mineralised quartz veins of Thanewasna Copper Deposit, Western Bastar Craton, Central India. J Geosci Res, Special Volume No.1: 51–56

  • Fischer G, Fassbinder E, de Mesquita Barros CE, Fossen H (2019) The evolution of quartz veins during the tectonometamorphic development of the Brusque Metamorphic Complex, Brazil. J S Am Earth Sci 93:174–182

    Article  Google Scholar 

  • Gerler J (1990) Geochemische Untersuchungen an hydrothermalen, metamorphen, granitischen und pegmatitischen Quarzen und deren Flüssigkeitseinschlüssen. Ph.D. thesis, Georg August Universität Göttingen, pp 169

  • GEOSURV (2008) Geological map of Sulaimaniya Quadrangle, Sheet NI-38–3, Scale 1:250000, 1st edition, GEOSURV, Baghdad, Iraq

  • Goldstein RH (2003) Chapter two: Petrographic analysis of fluid inclusions, In: Samson I, Anderson A, Marshall D, (eds.), Fluid inclusions analysis and interpretation. Mineral. Assoc. Can., Short Course Series 32: 9–53

  • Goetze J, Ploetze M (1997) Investigation of trace-element distribution in detrital quartz by electron paramagnetic resonance (EPR). Eur J Mineral 9(3):529–538. https://doi.org/10.1127/ejm/9/3/0529

    Article  Google Scholar 

  • Götze J, Plötze M, Graupner T, Hallbauer DK, Bray CJ (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochim Cosmochim Acta 68(18):3741–3759

    Article  Google Scholar 

  • Götze J (2009) Chemistry, textures and physical properties of quartz—geological interpretation and technical application. Mineral Mag 73(4):645–671

    Article  Google Scholar 

  • Hall DH, Sterner MS, Bodnar RJ (1988) Freezing point depression of NaCl-KCl-H2O solutions. Econ Geol 83:197–202

    Article  Google Scholar 

  • Jassim SZ, Goff C (2006) Geology of Iraq. DOLIN, sro, distributed by Geological Society of London

  • Kesler SE (2005) Ore-forming fluids. Elements 1(1):13–18

    Article  Google Scholar 

  • Lawrence DM, Treloar PJ, Rankin AH, Boyce A, Harbidge P (2013) A fluid inclusion and stable isotope study at the Loulo mining district, Mali, West Africa: implications for multifluid sources in the generation of orogenic gold deposits. Econ Geol 108(2):229–257

    Article  Google Scholar 

  • Leeder O, Thomas R, Klemm W (1987) Einschlüsse in Mineralen. VEB Deutscher Grundstoffverlag, Leipzig, p 180

    Google Scholar 

  • Lei XF, Jiang SY, Su HM, Ying YC (2021) Hydrothermal titanite U-Pb age and geochemistry as a reliable chronometer and genetic tracer for quartz vein-type tungsten deposit at Qipangou of Qinling orogenic belt Central China. Ore Geol Rev 135:104246

    Article  Google Scholar 

  • Manalo PC, Subang LL, Imai A, de los Santos MC, Takahashi R, Blamey NJ (2020) Geochemistry and fluid inclusions analysis of vein quartz in the multiple hydrothermal systems of Mankayan Mineral District Philippines. Resour Geol 70(1):1–27

    Article  Google Scholar 

  • Mansurbeg H, Morad D, Othman R, Morad S, Ceriani A, Al-Aasm I, Kolo K, Spirov P, Proust JN, Koyi Preat A, Koyi H (2016) Hydrothermal dolomitization of the Bekhmeformation (Upper Cretaceous), Zagros Basin, Kurdistan Region of Iraq: Record of oil migration and degradation. Sediment Geol 341:147–162

  • Mirza TA, Kalaitzidis SP, Mohammed SH, Rashid SG, Petrou X (2017) Geochemistry and genesis of sulphide ore deposits in Sharosh Village Qandil Series, Kurdistan Region, NE Iraq. Arab J Geosci 10(19):1–19. https://doi.org/10.1007/s12517-017-3210-y

    Article  Google Scholar 

  • Mirza TA, Rashid SG (2018) Mineralogy, Fluid inclusions and stable isotopes study constraints on genesis of sulfide ore mineral, Qaladiza area Qandil Series, Iraqi Kurdistan Region. Arab J Geosci 11(7):1–15. https://doi.org/10.1007/s12517-018-3490-x

    Article  Google Scholar 

  • Monecke T, Kempe U, Götze J (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth Planet Sci Lett 202(3–4):709–724

    Article  Google Scholar 

  • Müller A, Wanvik JE, Ihlen PM (2012) Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway. In Quartz: deposits, mineralogy and analytics Springer, Berlin, Heidelberg, pp. 71–118

  • Palme H (1988) Chemical abundances in meteorites Reviews in Modern Astronomy (G. Klare, editor), Springer, Berlin; 28–51

  • Passchier CW, Williams PR (1996) Conflicting shear sense indicators in shear zones; the problem of non-ideal sections. J Struct Geol 18(10):1281–1284

    Article  Google Scholar 

  • Poporadze N, Seskuria O, Inanashvili N (2017) Alpine type quartz veins of the fold system of the Greater Caucasus (within Georgia). Bull Georgian Natl Acad Sci 11(2):69–75

    Google Scholar 

  • Qin J, Wang D, Chen Y (2022) Geochemical and geochronological constraints on a granitoid containing the largest Indosinian tungsten (W) deposit in South China (SC): Petrogenesis and Implications. Minerals 12(1):80

    Article  Google Scholar 

  • Raimbourg H, Rajič K, Moris-Muttoni B, Famin V, Palazzin G, Fisher D, Morell K, Erdmann S, Di Carlo I, Montmartin C (2021) Quartz vein geochemistry records deformation processes in convergent zones. Geochem Geophys Geosyst 22(4):e2020GC009201. https://doi.org/10.1029/2020GC009201

    Article  Google Scholar 

  • Roedder EW (1958) Technique for the extraction and partial chemical analysis of fluid-filled inclusions from minerals. Econ Geol 53(3):235–269

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineral Soc Am Rev Min 12:644

    Google Scholar 

  • Roedder E (2003) Significance of melt inclusions. Developments in Volcanology 5:xv–xvi

  • Rusk BG, Lowers HA, Reed MH (2008) Trace elements in hydrothermal quartz: relationships to cathodoluminescent textures and insights into vein formation. Geology 36(7):547–550

    Article  Google Scholar 

  • Schrön W, Baumann L, Rank K (1982) Zur Charakterisierung von Quarzgenerationen in den postmagmatogenen Erzformationen des Erzgebirges. Z Geol Wiss 10(12):1499–1521

    Google Scholar 

  • Schrön W, Schmädicke E, Thomas R, Schmidt W (1988) Geochemische Untersuchungen an Pegmatitquarzen. Z Geol Wiss 16(3):229–244

    Google Scholar 

  • Shields G, Stille P (2001) Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chem Geol 175(1–2):29–48. https://doi.org/10.1016/S0009-2541(00)00362-4

    Article  Google Scholar 

  • Siebers FB, Klapper H (1984) Zelluläres wachstum und verunreinigungsverteilung im zuchtquarz, aufgezeigt mitröntgentopographie; Zeitschrift fur Kristallographie 167: 177–178

  • Siebers FB, (1986) Inhomogene Verteilung von Verunreinigungen in gezüchteten und natürlichen Quarzen. (Thesis, Ruhr-Universität Bochum, Germany) 133 p

  • Sigue C, Moundi A, Suh CE, dos Santos MFM, Fujiwara E, Suzuki CK, Ndema-Mbongue J (2020) Assessment of shear zone-derived quartz from the Etam area, southwest Cameroon as potential high-purity quartz resource: petrography, geochemistry and technological studies. SN Appl Sci 2(4):1–20

    Article  Google Scholar 

  • Sissakian VK (2013) Geological evolution of the Iraqi Mesopotamia Foredeep, inner platform and near surroundings of the Arabian Plate. J Asian Earth Sci 72:152–163

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) Dynamic recrystallization of quartz: correlation between natural and experimental conditions. Geol Soc London Special Publications 200(1):171–190

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution: an example of the geochemical record preserved in sedimentary rocks. Blackwale, Oxford, p 312

    Google Scholar 

  • Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55(1–4):27–47

    Article  Google Scholar 

  • Van den Kerkhof AM, Kronz A, Simon K, Scherer T (2004) Fluid-controlled quartz recovery in granulite as revealed bycathodoluminescence and trace element analysis (Bamble sector, Norway). Contributions Mineral Petrol 146:637–652

    Article  Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Miner Petrol 152(6):743–754

    Article  Google Scholar 

  • Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10(4):149–165

    Article  Google Scholar 

  • Weil JA (1993) A review of the EPR spectroscopy of the point defects in α-quartz: the decade 1982–1992. The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2: 131–144

Download references

Acknowledgements

The authors thank Ms. Vaya Xanthopoulou, Laboratory of Electron Microscopy and Microanalysis, Faculty of Natural Sciences, University of Patras, for conducting the XRF analysis. Special thanks to the Illinois State Geological Survey for doing fluid inclusion measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tola A. Mirza.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirza, T.A., Salih, N.M., Delpomdor, F.R.A. et al. Formation of quartz veins within Serginil Phyllite Group-Penjween area, Iraqi Kurdistan Region: insights from geochemical and fluid inclusion data. Arab J Geosci 15, 887 (2022). https://doi.org/10.1007/s12517-022-10143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10143-0

Keywords

Navigation