Skip to main content

Advertisement

Log in

Probabilistic seismic hazard assessment for Isparta province (Turkey) and mapping based on GIS

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The province of Isparta is located in the southwest of Turkey and is in a seismically active belt. Many moderate and large earthquakes that occurred in the historical and instrumental periods in the region caused severe losses of life and property. This study aims to calculate the probabilistic seismic hazard analysis (PSHA) of Isparta province, which has the potential to produce earthquakes with magnitudes of six or more due to its active tectonics. It also aims to obtain peak ground acceleration (PGA) maps. A comprehensive and homogeneous data set of Mw≥4 for the period between 1900 and March 2021 was used in the analysis. The estimation of the seismic hazard parameters was based on the Poisson method, and the peak ground acceleration values corresponding to the recurrence period of 475 years were obtained by using two different attenuation relationships. The PGA maps of both attenuation relationships were visualized in the GIS environment. The highest PGA was obtained as 0.52 g from Akkar and Çağnan formula and 0.63 g from Kalkan and Gülkan formula in the Yalvaç district, located in the north of Isparta province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AFAD (2018) Türkiye Bina Deprem Yönetmeliği. Afet ve Acil Durum Yönetimi Başkanlığı. https://www.afad.gov.tr/tr/24210/Turkiye-Bina-Deprem-Yonetmeligi. Accessed 05 May 2021

  • Ahmad I, El Naggar MH, Naeem Khan A (2008) Neural network based attenuation of strong motion peaks in Europe. J Earthq Eng 12:663–680. https://doi.org/10.1080/13632460701758570

    Article  Google Scholar 

  • Akkar S, Çağnan Z (2010) A local ground-motion predictive model for Turkey, and its comparison with other regional and global ground-motion models. Bull Seismol Soc Am 100(6):2978–2995. https://doi.org/10.1785/0120090367

    Article  Google Scholar 

  • Akkar S, Kale Ö, Yakut A, Ceken U (2018) Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey. Bull Earthq Eng 16(8):3439–3463. https://doi.org/10.1007/s10518-017-0101-2

    Article  Google Scholar 

  • Alavi AH, Gandomi AH (2011) Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput Struct 89(23–24):2176–2194. https://doi.org/10.1016/j.compstruc.2011.08.019

    Article  Google Scholar 

  • Alavi AH, Gandomi AH, Modaresnezhad M, Mousavi M (2011) New ground-motion prediction equations using multi expression programing. J Earthq Eng 15(4):511–536. https://doi.org/10.1080/13632469.2010.526752

    Article  Google Scholar 

  • Ambraseys NN, Finkel CF (1987) Seismicity of Turkey and neighbouring regions, 1899–1915. Ann Geophys B 701–726.

  • Ambraseys NN (1988) Engineering seismology. Earthq Eng Struct Dyn 17(1):51–105. https://doi.org/10.1002/eqe.4290170102

    Article  Google Scholar 

  • Ambraseys NN, Jackson JA (1998) Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophys J Int 133:390–406. https://doi.org/10.1046/j.1365-246X.1998.00508.x

    Article  Google Scholar 

  • Anderson JG (1991) Strong motion seismology. Rev Geophys 29 700–720 (part 2). 10.1002/rog.1991.29.s2.700

  • Anderson JG, Brune JN (1999) Probabilistic seismic hazard analysis without the ergodic assumption. Seismol Res Lett 70(1):19–28. https://doi.org/10.1785/gssrl.70.1.19

    Article  Google Scholar 

  • Avşar Ü (2013) Isparta Büklümü Tektonik Yapısının Mayetotellürik Yöntem İle Araştırılması. Dissertation, Istanbul Technical University

  • Aydan O, Sedaki M, Yarar R (1996) The seismic characteristics of Turkish earthquakes. In: Eleventh world conference on earthquake engineering, Acapulco, Mexico, pp 1–8

  • Baker JW (2013) An introduction to probabilistic seismic hazard analysis. White paper version 2(1):79. https://www.jackwbaker.com/Publications/Baker_(2013)_Intro_to_PSHA_v2.pdf . Accessed 01 May 2021

  • Barka AA, Kadinsky-Cade C (1988) Strike-slip geometry in Turkey and its in Cuence on earthquake activity. Tectonics 7:663–684

    Article  Google Scholar 

  • Barka A, Reilinger R (1997) Active tectonics of the eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali di Geofisica XL(3):587-610. http://hdl.handle.net/2122/1520

  • Boore DM (1983) Strong-motion seismology. Rev of Geophys 21(6):1308–1318. https://doi.org/10.1029/RG021i006p01308

    Article  Google Scholar 

  • Borcherdt RD (1970) Effects of local geology on ground motion near San Francisco Bay. Bull Seismol Soc Am 60(1):29–61

    Google Scholar 

  • Bozcu M, Yağmurlu F, Şentürk M (2007) Fethiye-Burdur Fay Zonunun Bazı Neotektonik ve Paleosismolojik Özellikleri, GB-Türkiye. Jeoloji Mühendisliği Dergisi 31(1):25–48 (in Turkish)

    Google Scholar 

  • Brunn JH (1976) L’arc Concave Zagro-Taurique Et Les Arcs Convexes Taurique Et Egeen, Collision Et İnduits. Bull Soc Geol France (7) XVIII, No:2 553567

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Article  Google Scholar 

  • Dalgıç S (2004) Factors affecting the greater damage in the Avcılar area of Istanbul during the 17 August 1999 Izmit earthquake. Bull Eng Geol Environ 63(3):221–232

    Article  Google Scholar 

  • Das R, Sharma ML, Wason HR (2016) Probabilistic seismic hazard assessment for northeast India region. Pure Appl Geophys 173:2653–2670. https://doi.org/10.1007/s00024-016-1333-9

    Article  Google Scholar 

  • Das A, Chakrabortty P (2021) Artificial neural network and regression models for prediction of free-field ground vibration parameters induced from vibroflotation. Soil Dyn Earthq Eng 148:106823. https://doi.org/10.1016/j.soildyn.2021.106823

    Article  Google Scholar 

  • Demer S (2008) Isparta ve Yakın Çevresi Yeraltısularının Hidrojeolojik, Hidrojeokimyasal ve İzotop Jeokimyasal İncelenmesi ve İçme Suyu Kalitesinin İzlenmesi. Dissertation, Suleyman Demirel University

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Effects of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194. https://doi.org/10.1029/94GL02118

    Article  Google Scholar 

  • Demirtaş R, Karakısa S, Yatman A, Baran B, Zünbül S, Iravul Y, Yılmaz R (1995) 1 Ekim 1995 Dinar depremi. TJK Bülteni 11:44–58 (in Turkish)

    Google Scholar 

  • Deniz A (2006) Estimation of earthquake insurance premium rates for Turkey. Dissertation, Department of Civil Engineering Middle East Technical University

  • Deniz A, Korkmaz KA, Irfanoglu A (2010) Probabilistic seismic hazard assessment for İzmir, Turkey. Pure Appl Geophys 167(12):1475–1484. https://doi.org/10.1007/s00024-010-0129-6

    Article  Google Scholar 

  • Derras B, Bard PY, Cotton F, Bekkouche A (2012) Adapting the neural network approach to PGA prediction: an example based on the KiK-net data. Bull Seismol Soc Am 102(4):1446–1461. https://doi.org/10.1785/0120110088

    Article  Google Scholar 

  • Dhanya J, Gade M, Raghukanth STG (2017) Ground motion estimation during 25th April 2015 Nepal earthquake. Acta Geod Geophys 52(1):69–93. https://doi.org/10.1007/s40328-016-0170-8

    Article  Google Scholar 

  • Douglas J (2003) Earthquake ground motion estimation using strong motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Sci Rev 61(1–2):43–104. https://doi.org/10.1016/S0012-8252(02)00112-5

    Article  Google Scholar 

  • Douglas J (2011) Ground-motion prediction equations 1964-2010, PEER Report 2011/102, Pacific Earthquake Engineering Research Center, College of Engineering. http://www.sudbury-granite.com/sites/default/files/webpeer-2011-102-john_douglas_-_published_jointly_by_brgm.pdf

  • Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86:2825–2852. https://doi.org/10.1029/JB086iB04p02825

    Article  Google Scholar 

  • Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004-2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter:200–201. https://doi.org/10.1016/j.pepi.2012.04.002

  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş, Şaroğlu F (2013) Active fault map of Turkey with an explanatory text. 1:1,250,000 Scale; General Directorate of Mineral Research and Exploration, Special Publication Series-30 Ankara-Turkey, ISBN: 978-605-5310-56

  • Erdik M, Doyuran V, Akkaş N, Gülkan P (1985) A probabilistic assessment of the seismic hazard in Turkey. Tectonophysics 117(3-4):295–344. https://doi.org/10.1016/00401951(85)90275-6

    Article  Google Scholar 

  • Erdik M, Biro YA, Onur T, Sesetyan K, Birgoren G (1999) Assessment of earthquake hazard in Turkey and neighboring regıons. Ann GeoBs 42(6):1125–1138

    Google Scholar 

  • Faccenna C, Bellier O, Martinod J, Piromallo C, Regard V (2006) Slab detachment beneath eastern Anatolia: a possible cause for the formation of the North Anatolian fault. Earth Planet Sci Lett 242:85–97. https://doi.org/10.1016/j.epsl.2005.11.046

    Article  Google Scholar 

  • Fukishima Y, Tanaka T (1990) A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan. Bull Seismol Soc Am 80-4:757–783

    Google Scholar 

  • Ghasemi H, McKee C, Leonard M, Cummins P, Moihoi M, Spiro S, Taranu F, Buri E (2016) Probabilistic seismic hazard map of Papua New Guinea. Nat Hazards 81:1003–1025. https://doi.org/10.1007/s11069-015-2117-8

    Article  Google Scholar 

  • Giardini D, Danciu L, Erdik M, Şeşetyan K, Tümsa MBD, Akkar S, Zare M (2018) Seismic hazard map of the Middle East. Bull Earthq Eng 16(8):3567–3570. https://doi.org/10.1007/s10518-018-0347-3

    Article  Google Scholar 

  • Glover C, Robertson A (1998) Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics 298:103–132

    Article  Google Scholar 

  • Gülen L, Pinar A, Kalafat D, Ozel N, Horasan G, Yilmazer M, Işikara AM (2002) Surface fault breaks, aftershock distribution, and rupture process of the 17 August 1999 Izmit, Turkey, earthquake. Bull Seismol Soc Am 92(1):230–244. https://doi.org/10.1785/0120000815

    Article  Google Scholar 

  • Güllü H, Erçelebi E (2007) A neural network approach for attenuation relationships: an application using strong ground motion data from Turkey. Eng Geol 93(3-4):65–81. https://doi.org/10.1016/j.enggeo.2007.05.004

    Article  Google Scholar 

  • Günaydın K, Günaydın A (2008) Peak ground acceleration prediction by artificial neural networks for northwestern Turkey. Math Probl Eng. https://doi.org/10.1155/2008/919420

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Article  Google Scholar 

  • Inan E, Çolakoğlu Z, Koç N, Bayülke N, Çoruh E (1996) 1976–1996 Earthquake acceleration records with catalogue. Ankara, Turkey: General Directorate of Disaster Affairs Earthquake Research Department (in Turkish)

  • İnce GÇ, Yılmazoğlu MU (2021) Probabilistic seismic hazard assessment of Muğla, Turkey. Nat Hazards 1–30. https://doi.org/10.1007/s11069-021-04633-9

  • İnce Y, Kurnaz TF (2018) Probabilistic seismic hazard analysis of Kahramanmaras Province, Turkey. Arab J Geosci 11:97. https://doi.org/10.1007/s12517-018-3434-5

    Article  Google Scholar 

  • Jackson J, McKenzie DP (1984) Active tectonics of the Alpine-Himalayan belt between western Turkey and Pakistan. Geophys J Roy Astr S 77:185–264. https://doi.org/10.1111/j.1365-246X.1984.tb01931.x

    Article  Google Scholar 

  • Joyner WB (1987) Strong-motion seismology. Rev of Geophys 25(6):1149–1160. https://doi.org/10.1029/RG025i006p0114

    Article  Google Scholar 

  • Joyner WB, Boore DM (1988) Measurement, characterization, and prediction of strong ground motion. Proceedings of Earthquake Engineering and Soil Dynamics. II; Geotechnical Division ASCE 43–102

  • Kadiroğlu FT, Kartal RF (2016) The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900–2012). Turk J Earth Sci 25(4):300–310. https://doi.org/10.3906/yer-1511-7

    Article  Google Scholar 

  • Kale Ö, Akkar S (2013) A new procedure for selecting and ranking ground motion prediction equations (GMPEs): the Euclidean distance based ranking (EDR) method. Bull Seismol Soc Am 103(2A):1069–1084. https://doi.org/10.1785/0120120134

    Article  Google Scholar 

  • Kale Ö (2014) Practical tools for ranking and selection of ground motion prediction equations (GMPEs) for probabilistic seismic hazard assessment and development of a regional GMPE. Dissertation, Middle East Technical University

  • Kalkan E, Gülkan P (2004) Site-dependent spectra derived from ground motion records in Turkey. Earthq Spectra 20(4):1111–1138. https://doi.org/10.1193/1.1812555

    Article  Google Scholar 

  • Kaveh A, Bakhshpoori T, Hamze-Ziabari SM (2016) Derivation of new equations for prediction of principal ground-motion parameters using M5′ algorithm. J Earthq Eng 20(6):910–930. https://doi.org/10.1080/13632469.2015.1104758

    Article  Google Scholar 

  • Kerh T, Lin JS, Gunaratnam D (2012) Development of neural network model for predicting peak ground acceleration based on microtremor measurement and soil boring test data. Analysis of Nonlinear Dynamics of Neural Networks. https://doi.org/10.1155/2012/394382

  • Ketin İ (1966) Tectonic units of Anatolia. Bulletin of the Mineral Research and Exploration Institute of Turkey. https://dergipark.org.tr/en/pub/bulletinofmre/issue/3892/51961. Accessed 01 May 2021

  • Kocyigit A (1984) Intra-plate neotectonic development in southwest Turkey and adjacent areas. Bull Geol Soc Turkey 27:1–16 (in Turkish)

    Google Scholar 

  • Koçyiğit, A. (2000). Güneybatı Türkiye’nin depremselliği. Batı Anadolu'nun depremselliği sempozyumu (BAD SEM2000), İzmir, Türkiye, 30-38 (in Turkish)

  • Koçyiğit A, Bozkurt E, Kaymakcı N, Şaroğlu F (2002) 3 Şubat 2002 Çay (Afyon) Depreminin Kaynağı ve Ağır Hasarın Nedenleri; Akşehir Fay Zonu. Jeolojik ön rapor 1-17 (in Turkish)

  • Koçyiğit A, Özacar AA (2003) Extensional neotectonic regime through the NE edge of the outer Isparta Angle, SW Turkey: new field and seismic data. Turk J Earth Sci 12(1):67–90

    Google Scholar 

  • Koçyiğit A, Gürboğa Ş, Kalafat D (2012) Nature and onset age of neotectonic regime in the northern core of Isparta Angle, SW Turkey. Geodin Acta 25(1–2):52–85. https://doi.org/10.1080/09853111.2013.839126

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, New Jersey, 653p

  • Kurnaz TF, Ince Y (2020) Evaluation of seismic hazard with probabilistic approach for Antakya Province (Turkey). J Earth Syst Sci 129(1):1–14. https://doi.org/10.1007/s12040-020-01438-5

    Article  Google Scholar 

  • Ma J, Dong L, Zhao G, Li X (2018) Qualitative method and case study for ground vibration of tunnels induced by fault-slip in underground mine. Rock Mech Rock Eng 52(6):1887–1901. https://doi.org/10.1007/s00603-018-1631-x

    Article  Google Scholar 

  • Ma J, Dong L, Zhao G, Li X (2019) Ground motions induced by mining seismic events with different focal mechanisms. Int J Rock Mech Min Sci 116:99–110. https://doi.org/10.1016/j.ijrmms.2019.03.009

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gürkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Şanlı I, Seeger H et al (2000) GPS constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Article  Google Scholar 

  • McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155(1):126–138. https://doi.org/10.1046/j.1365-246X.2003.02023.x

    Article  Google Scholar 

  • McGuire RK (1995) Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bull Seismol Soc Am 85(5):1275–1284

    Article  Google Scholar 

  • McGuire RK (2008) Probabilistic seismic hazard analysis: early history. Earthq Eng Struct Dyn 37(3):329–338. https://doi.org/10.1002/eqe.765

    Article  Google Scholar 

  • McKenzie DP (1972) Active tectonics of the Mediterranean region. Geophys J Roy Astr S 30:109–185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x

    Article  Google Scholar 

  • Mulargia F, Stark PB, Geller RJ (2017) Why is probabilistic seismic hazard analysis (PSHA) still used? Phys Earth Planet Inter 264:63–75. https://doi.org/10.1016/j.pepi.2016.12.002

    Article  Google Scholar 

  • Öncü Z (2007) Burdur Fay Zonunda Deprem Erken Uyarı Sisteminin Geliştirilmesi. Dissertation, Suleyman Demirel University

  • Ordaz M, Aguilara A, Arboleda J (2007) CRISIS2007 Ver.7.2, Program for Computing Seismic Hazard. Instituto de Ingeniería UNAM Mexico

  • Orhan A, Seyrek E, Tosun H (2007) A probabilistic approach for earthquake hazard assessment of the Province of Eskişehir, Turkey. Nat Hazards Earth Syst Sci 7(5):607–614. https://doi.org/10.5194/nhess-7-607-2007

    Article  Google Scholar 

  • Poisson A (1984) The extension of the Ionian trough into SW Turkey in the geological evolution of the eastern medditerranean. 17. Geol Soc Spec Publ London 241–250. https://doi.org/10.1144/GSL.SP.1984.017.01.18

  • Poisson A, Yağmurlu F, Bozcu M, Şentürk M (2003) New insights on the tectonic setting and evolution around the apex of the Isparta Angle Geol J 38:257-282. https://doi.org/10.1002/gj.955

  • Putra RR, Kiyono J, Furukawa A (2014) Vulnerability assessment of non-engineered houses based on damage data of the 2009 Padang earthquake in Padang city, Indonesia. Int J Geomate 7(2), 1076-1083. https://www.geomatejournal.com/sites/default/files/articles/1076-1083-140714-rusnardi-Dec-2014.pdf. Accessed 09 September 2021

  • Rafi Z, Lindholm C, Bungum H, Laghari A, Ahmed N (2012) Probabilistic seismic hazard of Pakistan, Azad-Jammu and Kashmir. Nat Hazards 61:1317–1354. https://doi.org/10.1007/s11069-011-9984-4

    Article  Google Scholar 

  • Reilinger R, Mcclusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, Arrajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and-implications for the dynamics of plate interactions. J Geophys Res BO5411, https://doi.org/10.1029/2005jb004051

  • Reiter L (1990) Earthquake hazard analysis: issues and insights; Colombia University Press, pp. 119–120

  • Sadigh K, Chang SY, Egan JA, Makdisi F, Youngs RR (1997) Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismol Res Lett 68(1):180–189. https://doi.org/10.1785/gssrl.68.1.180

    Article  Google Scholar 

  • Sandvol E, Türkelli N, Barazangi M (2003) The eastern Turkey seismic experiment: the study of a young continent-continent collision. Geophys Res Lett 30(24):8038. https://doi.org/10.1029/2003GL018912

    Article  Google Scholar 

  • Sargın S (2011) The physical environmental impacts on the dwelling places of Isparta and surrounding area. Doğu Coğrafya Dergisi 9(11). https://dergipark.org.tr/tr/pub/ataunidcd/issue/2452/30974. Accessed 10 June 2021

  • Şaroğlu F, Emre Ö, Kuşçu I (1992) The East Anatolian fault zone of Turkey. Ann Tectonicae 6:99–125

    Google Scholar 

  • Satılmış S (2018) Birinci El Kaynaklara Göre Isparta Depremleri (19. Yüzyılın İkinci Yarısı); Selçuk Üniversitesi Edebiyat Fakültesi Dergisi 40:297–312. https://doi.org/10.21497/sefad.515374

  • Selcuk L, Selcuk AS, Beyaz T (2010) Probabilistic seismic hazard assessment for Lake Van basin, Turkey. Nat Hazards 54(3):949–965

    Article  Google Scholar 

  • Şenel M (1984) Discussion on Antalya nappes. In: Tekeli O, Göncüoğlu MC (eds.), Geology of the Taurus Belt, Proceedings of the International Symposium. Mineral Research and Exploration Institute of Turkey (MTA) Ankara, Turkey, 41–51

  • Şengör AMC (1980) Türkiye’nin neotektoniğinin esasları; Türkiye Jeol Kur Konferans dizisi 40 (in Turkish)

  • Şengör AMC, Görür N, Şaroğlu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. https://archives.datapages.com/data/sepm_sp/SP37/Strike_Slip_Faulting_and_Related_Basin.htm. Accessed 03 May 2021

  • Şengör AMC, Özeren S, Genç T, Zor E (2003) East Anatolian high plateau as a mantle-supported, north-south shortened domal structure. Geophys Res Letters 30(24):8045. https://doi.org/10.1029/2003GL017858

    Article  Google Scholar 

  • Sextos A, De Risi R, Pagliaroli A, Foti S, Passeri F, Ausilio E, Zimmaro P (2018) Local site effects and incremental damage of buildings during the 2016 Central Italy earthquake sequence. Earthq Spectra 34(4):1639–1669. https://doi.org/10.1193/100317EQS194M

  • Shiuly A, Roy N, Sahu RB (2020) Prediction of peak ground acceleration for Himalayan region using artificial neural network and genetic algorithm. Arab J Geosci 13(5):1–10. https://doi.org/10.1007/s12517-020-5211-5

    Article  Google Scholar 

  • Silahtar A, Kanbur, MZ, Beyhan G (2020) Investigation of a sedimentary basin by using gravity and seismic reflection data in the Isparta basin, southwestern Turkey. Bull Eng Geol Environ 1–18. https://doi.org/10.1007/s10064-020-01804-z

  • Somerville P, Graves R (2003) Characterization of earthquake strong ground motion. Pure appl geophys 160:1811–1828. https://doi.org/10.1007/s00024-003-2407-z

    Article  Google Scholar 

  • Stirling MW, Wesnousky SG, Berryman KR (1998) Probabilistic seismic hazard analysis of New Zealand. New Zealand J Geol Geophys 41(4):355–375. https://doi.org/10.1080/00288306.1998.9514816

    Article  Google Scholar 

  • Taymaz T, Price S (1992) The 1971 May 12 Burdur earthquake sequence, SW Turkey: a synthesis of seismological and geological observations. Geophys J Int 108:589–603. https://doi.org/10.1111/j.1365-246X.1992.tb04638.x

    Article  Google Scholar 

  • Thomas S, Pillai GN, Kirat P, Zuhair M (2013) Prediction of peak ground acceleration (PGA) using artificial neural networks. In: International conferences on advances in computer science, AETACS, pp 270–276, Elsevier

  • Ulusay R, Tuncay E, Sonmez H, Gokceoglu C (2004) An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Eng Geol 74:265–291. https://doi.org/10.1016/j.enggeo.2004.04.002

    Article  Google Scholar 

  • Veneziano D, Cornell CA, O’Hara T (1984) Historic method for seismic hazard analysis; elect. Power res Inst report NP-3438, Palo alto

  • Wang X, Cai M (2017) Numerical analysis of ground motion in a South African mine using SPECFEM3D. In Proceedings of the First International Conference on Underground Mining Technology, Perth, Australian, pp. 255–268. https://doi.org/10.36487/ACG_rep/1710_20_Wang

  • Weatherill G, Burton PW (2010) An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation. Tectonophysics 492(1-4):253–278. https://doi.org/10.1016/j.tecto.2010.06.022

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Yağmurlu F, Savaşçın Y, Ergün M (1997) Relation of alkaline volcanism and active tectonism within the evolution of the Isparta Angle, SW-Turkey. J Geol 105:717–728. https://doi.org/10.1086/515978

    Article  Google Scholar 

  • Yağmurlu F, Savaşçın Y, Bozcu M (2000) Neotectonic events within the SW Turkey and importance of tectonic evolution of Isparta Angle; International Earth Sciences Congress on Aegean Regions Abstracts İzmir/Turkey

  • Yerlikaya-Özkurt F, Askan A, Weber GW (2014) An alternative approach to the ground motion prediction problem by a non-parametric adaptive regression method. Eng Optim 46(12):1651–1668. https://doi.org/10.1080/0305215X.2013.858141

    Article  Google Scholar 

  • Yücemen MS (1982) Sismik Risk Analizi. Ankara, Turkey: Orta Doğu Teknik Üniversitesi (in Turkish)

  • Yücemen MS (2008) Binalar için Deprem Mühendisliği Temel İlkeleri Deprem Tehlikesinin Tahmininde Olasılıksal Yöntemler 14. Bölüm Ankara Bizim Büro Basımevi 365-413 (in Turkish)

Download references

Acknowledgements

The authors would like to thank the Kandilli Observatory and Earthquake Research Institute (KOERI) for providing the data set used in the study. A considerable part of this study was carried out as a master’s thesis of Ms. Serap Kırım at Sakarya University, Institute of Natural Sciences.

Data availability

The data used in the study is public.

Code availability

CRISIS2007 software is available at https://ecapra.org/topics/crisis-2007.

Author information

Authors and Affiliations

Authors

Contributions

SK data analysis, software operation, literature review, investigation of attenuation relationships, and manuscript editing; EB literature review, analyses, preparation of figures, investigation of attenuation relationships, manuscript writing, preparation, and editing; GH methodology, mentoring, reviewing and editing, writing, revision, interpretation of figures, and manuscript finalization.

Corresponding author

Correspondence to Emrah Budakoğlu.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Longjun Dong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kırım, S., Budakoğlu, E. & Horasan, G. Probabilistic seismic hazard assessment for Isparta province (Turkey) and mapping based on GIS. Arab J Geosci 14, 2227 (2021). https://doi.org/10.1007/s12517-021-08653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08653-4

Keywords

Navigation