Skip to main content

Advertisement

Log in

The Zhacang thermal field, Qinghai Province, China: its geology, geophysics, chemistry, and conceptual model

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Zhacang thermal field has the highest temperature and the most typical characteristics among the 84 geothermal anomalies discovered in Qinghai Province, China. It is located 15 km southwest of Guide County and has a total area of 8.4 km2, where two geothermal wells have been drilled since 2011. This paper summarises the geological conditions, drilling data, geophysical exploration data, and hydrochemical characteristics of the Guide–Zhacang geothermal field. The Zhacang geothermal field has a high geothermal flow value and is rich in geothermal resources with high thermal conductivity (2.910 W/(m•K)) and high geothermal flow value (87–117 mW/m2). The main strata are made up of Neogene mudstone, Triassic sand slate, and Indosinian granite and granodiorite, which provide a good thermally insulating cover layer and storage zone. The Zhacang and Reguang faults are deep, which helps the deep heat source and underground hot water move upward. The source of borehole hot water and hot spring water in the Zhacang geothermal field is atmospheric precipitation with a recharge elevation of 3320–3470 m, and the circulation depth is −2888.6 m. The results of explorations and surveys are integrated to propose a new conceptual model of the Zhacang geothermal reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bücker C, Rybach L (1996) A simple method to determine heat production from gamma-ray logs. Mar Pet Geol 13(4):373–375

    Article  Google Scholar 

  • Chambefort I, Buscarlet E, Wallis IC, Sewell S, Wilmarth M (2016) Ngatamariki geothermal field, New Zealand: geology, geophysics, chemistry and conceptual model. Geothermics 59:266–280

    Article  Google Scholar 

  • Chen X, 2016. Research on the application of geophysical methods in hot dry rock prospecting [D]. Jilin University (Chinese)

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3654):1702–1703

    Article  Google Scholar 

  • Dobson P, Gasperikova E, Spycher N, Lindsey NJ, Guo TR, Chen WS, Liu CH, Wang CJ, Chen SN, Fowler APG (2018) Conceptual model of the Tatun geothermal system, Taiwan. Geothermics 74:273–297

    Article  Google Scholar 

  • Fang B, Zhou X, Liang SH (2009) Characteristics and Utilization of the Zhacang Hot Springs in Guide County, Qinghai. Geoscience 23(1):57–63 (Chinese)

    Google Scholar 

  • Gan B, Li BX, Zhang Q, Hou LP, Zhiqiang Zhang ZQ, 2017. An analysis of Guide basin geological and geophysical characteristics in geothermal resource control. China’s Manganese industry 35(1), 69-73 (Chinese)

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Guo LL, Zhang YJ, Yu ZW, Hu ZJ, Lan CY, Xu TF (2016) Hot dry rock geothermal potential of the Xujiaweizi area in Songliao Basin, northeastern China. Environ Earth Sci 75(6):1–22

    Google Scholar 

  • Jha SK, Puppala H (2018) Conceptual modeling and characterization of Puga geothermal reservoir, Ladakh, India. Geothermics 72:326–337

    Article  Google Scholar 

  • Jiang ZJ, Xu TF, Owen DDR, Jia XF, Feng B, Zhang Y (2018) Geothermal fluid circulation in the guide basin of the northeastern Tibetan Plateau: isotopic analysis and numerical modeling. Geothermics 71:234–244

    Article  Google Scholar 

  • Lang XJ, Lin WJ, Liu ZM, Xing LX, Wang GL (2016) Hydrochemical characteristics of geothermal water in Guide basin. Earth Sci 41(10):1723–1734 (Chinese)

    Google Scholar 

  • Lang XJ, Zhang FW, Wang GL (2017) The thermal structure and geothermal genesis mechanism in Guide basin. Acta Geosci Sin 38(1):43–46 Chinese

    Google Scholar 

  • Li LL, 2016. Research on the preservative law and genetic model of geothermal resources in Guide basin, Qinghai province [D]. East China institute of technology (Chinese)

  • Li LG, Li BX (2017) A discussion on the heat source mechanism and geothermal system of Gonghe-Guide basin and mountain geothermal field in Qinghai Prov-ince. Geophys Geochem Explor 41(1):29–34

    Google Scholar 

  • Li XL, Wu GL, Lei YD, Li CY, Zhao JC, Bai YG, Zeng ZF et al (2016) Suggestions for geothermal genetic mechanism and exploitation of Zhacang temple geothermal energy in Guidi county, Qinghai province. J Jilin Univ (Earth Sci Ed) 46(1):220–229 (Chinese)

    Google Scholar 

  • Liao Y, Ma T, Chen LZ, Tian CY, Shi JJ (2013) Hydrochemistry of high-arsenic thermal groundwater of low-temperature in the Guide basin in Qinghai, China. Hydrogeol Eng Geol 40(4):121–126

    Google Scholar 

  • Liu S, Zhang G, Heller P (2007) Cenozoic basin development and its indication of plateau growth in the Xunhua-Guide district. Sci China D: Earth Sci 50(2):277–291

    Article  Google Scholar 

  • Pasvanoğlu S, Çelik MA (2018) Conceptual model for groundwater flow and geochemical evolution of thermal fluids at the Kızılcahamam geothermal area, Galatian volcanic Province. Geothermics 71:88–107

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in geochemical interpretation of water analyses. Trans Am Geophys Union 25:914–923

    Article  Google Scholar 

  • Popov YA, Dan FC, Pribnow Sass JH, Williams CF, Burkhardt H (1999) Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28:253–276

    Article  Google Scholar 

  • Portugal E, Birkle P, Tello E, Tello M et al (2000) Hydrochemical–isotopic and hydrogeological conceptual model of the Las Tres Vırgenes geothermal field, Baja California Sur, México. J Volcanol Geotherm Res 101:223–244

    Article  Google Scholar 

  • Pribnow D, Williams CF, Sass JH, Keating R (1996) Thermal conductivity of watersaturated rocks from the KTB pilot hole at temperatures of 25–300 °C. Geophys Res Lett 23:391–394

    Article  Google Scholar 

  • Rao S, Hu SB, Zhu CQ et al (2013) The characteristics of heat flow and lithospheric thermal structure in Junggar Basin, Northwest China. Geophys 56(8):2760–2770 (Chinese)

    Google Scholar 

  • Rybach L (1976) Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Appl Geophys 114:309–317

    Article  Google Scholar 

  • Sass JH, Lachenbruch AH, Moses TH, Morgan P (1992) Heat flow from a scientific research well at Cajon Pass, California. J Geophys Res 5017–5030

  • Scanlon BR (2010) Physical Controls on Hydrochemical Variability in the Inner Bluegrass Karst Region of Central Kentucky a. Ground Water 27(5):639–646

    Article  Google Scholar 

  • Seipold U, Seipold U (1998) Thermal properties of gneisses and amphibolites-high pressure and high temperature investigations of KTB-rock samples. Tectonophysics 291(1):173–178

    Article  Google Scholar 

  • Shen XJ, Zhang WR, Yang SZ, Guan Y, Jing X (1990) Heat flow evidence for the differentiated crust-mantle thermal strctures of the northern and southern terranes of the Qinghai-Xizang plateau. Acta Geosicientia Sin 21:203–214 (Chinese)

    Google Scholar 

  • Shi WD, Guo JQ, Zhang SQ, Ye CM, Li J, Ma XH (2010) The distribution and geochemistry of geothermal groundwater bearing F and As in the Guide basin. Hydrogeol Eng Geol 37(2):36–41 (Chinese)

    Google Scholar 

  • Steinhorst RK, Williams RE (1985) Discrimination of groundwater sources using cluster analysis, MANOVA, canonical analysis and discriminant analysis. Water Resour Res 21:1149–1156

    Article  Google Scholar 

  • Stetzenbach KJ, Hodge VF, Guo C, Farnham IM (2001) Johannesson K. H Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Nevada, USA. J Hydrol 243:254–271

    Article  Google Scholar 

  • Tan H, Zhang W, Chen J, Jiang S, Kong N (2012) Isotope and geochemical study for geothermal assessment of the Xining basin of the northeastern Tibetan Plateau. Geothermics 42(2):47–55

    Article  Google Scholar 

  • Tang XY, Hu SB, Zhang GC et al (2014) Characteristic of surface heat flow in the Pearl River Mouth Basin and its relationship with thermal lithosphere thickness. Geophys 57(6):1857–1867 (Chinese)

    Google Scholar 

  • Tang XC, Zhang J, Pang ZH, Hu SB, Tian J, Bao SJ (2017) The eastern Tibetan Plateau geothermal belt, western China: geology, geophysics, genesis, and hydrothermal system. Tectonophysics 717:433–448

    Article  Google Scholar 

  • Uzelli T, Baba A, Mungan GG et al (2017) Conceptual model of the Gülbahçe geothermal system, Western Anatolia, Turkey: based on structural and hydrogeochemical data. Geothermics 68:67–85

    Article  Google Scholar 

  • Wollenberg HA, Smith AR (2013) Correction to “Radiogenic heat production of crustal rocks: an assessment based on geochemical data”. Geophys Res Lett 14(3):295–298

    Article  Google Scholar 

  • Xue JQ, Gan B, Li BX, Wang ZL (2013) Geological-geophysical characteristics of enhanced geothermal systems (hot dry rocks) in Gonghe-Guide basin [J]. Geophys Geochem Explor 37(1):35–41 (Chinese)

    Google Scholar 

  • Zhang SQ, Li CH, Sun WY, Xu WL, Xin YH, Shi WD et al (2008) Construction of the conceptual model of thermal reservoir structure of the Xining basin, China. Geol Bull China 27(1):126–136 (Chinese)

    Google Scholar 

  • Zhang C, Jiang GZ, Shi YZ, Wang ZT, Wang Y, Li ST et al (2018) Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan plateau. Geothermics 72:182–192

    Article  Google Scholar 

  • Zhao GF, Liang W, Li BX, Wang ZL (2016) Discussing geophysical exploration methods on dry-hot-rock according to geothermal exploration results in gonghe-guide basin of qinhai province. Gansu Geol 25(2):62–67 (Chinese)

    Google Scholar 

  • Zhou XB, Li C, Li YK (2005) Study on the genesis of the Zhacang geothermal field in Guide County, Qinghai Province. Qinghai Tech 2:18–20 (Chinese)

    Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of China (Grant Nos. 41772238 and 42002258), the Foundation Research Project of Qinghai Science and Technology Agency (2016-ZJ-769), and the Geological and Prospecting Foundation of Qinghai Province (2016020160sh010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhou.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Supplementary Information

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhang, Y., Luo, Y. et al. The Zhacang thermal field, Qinghai Province, China: its geology, geophysics, chemistry, and conceptual model. Arab J Geosci 14, 711 (2021). https://doi.org/10.1007/s12517-021-07040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07040-3

Keywords

Navigation