Skip to main content
Log in

Multi-dataset analysis to assess mineral potential of MVT-type zinc-lead deposits in Malayer-Isfahan metallogenic belt, Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Malayer-Isfahan metallogenic belt (MIMB) is located in the Sanandaj-Sirjan zone. The belt hosts the important Zn-Pb deposits of Iran which are predominantly hosted by Cretaceous limestone, limestone-dolomite, limestone-shale, and carbonate sandstones. These deposits, which are associated with dolomitization, silicification, and calcitization, are believed to be mainly epigenetic stratabound Mississippi Valley-type (MVT) mineralization. This research aims at presenting an efficient geological-based exploration model through the integration of structural, lithological, alteration, and geochemical datasets from Malayer-Isfahan metallogenic belt. The main genetic factors of epigenetic stratabound Zn-Pb MVT-type mineralization and those of the well-known MVT deposits of the study area were used to extract the recognition criteria for potential mapping of these deposits. The predictive maps of geological, geochemical, structural, and alteration data were generated by fuzzy and simple weighted overlay (SWO) methods, while final favorability maps were created by SWO and technique for order preference by similarity ideal solution (TOPSIS) methods. The results were finally validated by using the known mineralized locations. The results showed that Lower Cretaceous dolomitized carbonate rocks and their contact with Jurassic shales, deep thrust faults, and joint predictive maps of Pb and Zn are the most important factors for exploration of these deposits in regional scale. The validation results showed that the moderate and high favorable areas identified by SWO and TOPSIS methods occupy 12.6% and 12.9% of the study area, which include 83.3% and 75% of the known MVT-type deposits, respectively. The well-known deposits such as Irankuh, Emarat, and Tiran occur in high potential areas of favorability maps. The results also delineated new potential targets for MVT-type mineralization in Malayer-Isfahan metallogenic belt for follow-up next exploration programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abbasian MA (2005) Inwestigation on economic geology of the lead-zinc minerals at Kuhrouyeh area, Shahreza (Esfahan). Thesis, University of Tabriz, Tabriz, Iran, 126 pp, M.Sc (in Persian with English abstract)

  • Abedi M, Norouzi GH (2012) Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration. J Appl Geophys 83:35–45

    Article  Google Scholar 

  • Abedi M, Norouzi GH (2016) A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data. Int J Appl Earth Observ Geoinform 46:31–44

    Article  Google Scholar 

  • Abedi M, Norouzi GH, Fathianpour N (2013a) Fuzzy outranking approach: a knowledge-driven method for mineral prospectivity mapping. Int J Appl Earth Observ Geoinform 21:556–567

    Article  Google Scholar 

  • Abedi M, Torabi SA, Norouzi GH (2013b) Application of fuzzy AHP method to integrate geophysical data in a prospect scale, a case study: Seridune copper deposit. Bollettino di Geofisica Teorica ed Applicata 54(2)

  • Abedi M, Torabi SA, Norouzi GH, Hamzeh M (2012) ELECTRE III: a knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping. J Appl Geophys 87:9–18

    Article  Google Scholar 

  • Afzali S, Parvin M (2013) The survey of residual environment and geology, texture, microfacies and type in Khan Sorme. Int J Agric Crop Sci 6(2):77–82

    Google Scholar 

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros, Iran: constraints from collisional and earlier deformation. Int J Earth Sci 94:401–419

    Article  Google Scholar 

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229(3–4):211–238

    Article  Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • An P (1991) Application of fuzzy set theory to integrated mineral exploration. Can J Explor Geophys 27:1–11

    Google Scholar 

  • Anderson GM (1983) Some geochemical aspects of sulfide precipitation in carbonate rocks. In: Kisvarsanyi G, Grant SK, Pratt WP, Koenig JW (eds) International conference on Mississippi valley-type lead-zinc deposits; proceedings volume. University of Missouri James Cook University of North Queensland, Geology Department, Rolla

  • Anderson GM, Macqueen RW (1982) Ore deposit models; Mississippi Valley-Type lead–zinc deposits. Geosci Canada 9:108–117

    Google Scholar 

  • Asadi HH, Porwal A, Fatehi M, Kianpouryan S, Lu YJ (2015) Exploration feature selection applied to hybrid data integration modeling: targeting copper-gold potential in central Iran. Ore Geol Rev 71:819–838

    Article  Google Scholar 

  • Asadi HH, Sansoleimani A, Fatehi M, Carranza EJM (2016) An AHP–TOPSIS predictive model for district-scale mapping of porphyry Cu–Au potential: a case study from Salafchegan area (central Iran). Nat Resourc Res 25(4):417–429

    Article  Google Scholar 

  • Ataei M, Sereshki F, Jamshidi M, Jalali S (2008) Suitable mining method for the Golbini no. 8 deposit in Jajarm (Iran) by using TOPSIS method. Mining Technol 117(1):1–5

    Article  Google Scholar 

  • Bagheri S, Stampfli GM (2008) The Anarak, Jandaq and Posht–e–Badam metamorphic complexes in Central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451:123–155

    Article  Google Scholar 

  • Bazargani-Guilani K, Karimzadeh Z, Ghoreyshinia SK (2012) Geology and petrography of Khane Sormeh Lead-zinc deposits, northwestern of Najaf Abad, Sanandaj-Sirjan zone, Iran. In: 4th Conference of Iranian Society of Economic Geology. Birjand University, Birjand

    Google Scholar 

  • Beirami MR, Tangestani MH (2020) A new band ratio approach for discriminating calcite and dolomite by ASTER imagery in arid and semiarid regions. Nat Resourc Res:1–17

  • Berberian M (2014) Active tectonics and geologic setting of the Iranian Plateau. In: Developments in Earth Surface Processes, vol 17. Elsevier, pp 151–171

  • Berberian M, King G (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18(2):210–265

    Article  Google Scholar 

  • Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights-of-evidence modelling: a new approach to mapping mineral potential. In: Agterberg FP, Bonham-Carter GF (eds) Statistical applications in the earth sciences. Geological Survey of Canada, Ottawa, pp 171–183

  • Boveiri Konari M, Yarmohammadi A, Rastad E, Choulet F, Rajabi A (2017) The role of syn-sedimentary structural control on the sediment-hosted Zn-Pb deposits in the Irankuh and Tiran Mining Districts, SE of Malayer-Esfahan Metallogenic Belt, Iran. TRIGGER international conference, Transe-Disciplinary Research on Iranian Geology, Geodynamics, Earthquakes and Resources, Tehran

  • Brabec D (1983) Evaluation of soil anomalies by discriminant analysis in geochemical exploration for carbonate-hosted lead–zinc deposits. Economic Geol 78:333–339

    Article  Google Scholar 

  • Brockie DC, Hare EH, Dingess PR (1968) The geology and ore deposits of the TriState district of Missouri, Kansas, and Oklahoma. In: Ridge JD (ed) Ore Deposits in the United States 1933–1967. American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, pp 400–430

  • Brown JS (1970) Mississippi Valley type lead-zinc ores: a review and sequel to the ‘Behre Symposium’. Mineralium Deposita 5:103–119

    Article  Google Scholar 

  • Carranza EJM (2010) Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis 10(2):171–187

    Google Scholar 

  • Carranza EJM, Hale M (1997) A catchment basin approach to the analysis of geochemical geological data from Albay province, Philippines. J Geochem Explor 60(2):157–171

    Article  Google Scholar 

  • Carranza EJM, Laborte AG (2015) Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput Geosci 74:60–70

    Article  Google Scholar 

  • Carranza EJM, Owusu EA, Hale M (2009) Mapping of prospectivity and estimation of number of undiscovered prospects for lode gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita 44(8):915–938

    Article  Google Scholar 

  • Cathles LM, Adams JJ (2005) Fluid flow and petroleum and mineral resources in the upper (<20 km) continental crust. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary Volume, 1905–2005. Society of Economic Geologists, Inc. Company, Littleton, pp 77–110

  • Chen SJ, Hwang CL (1992) Fuzzy Multiple attribute decision making: methods and applications. Springer-Verlag, Berlin

  • Corbella M, Ayora C, Cardellach E (2004) Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits. Mineralium Deposita 39(3):344–357

    Article  Google Scholar 

  • Dagdeviren M, Yavuz S, Kilinc N (2009) Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Syst Appl 36:8143–8151

    Article  Google Scholar 

  • Eftekharnezhad J (1980) Subdivision of Iran into different structural realms with relation to sedimentary basins (in Farsi). Bull Iranian Petroleum Institute 82:19–28

    Google Scholar 

  • Ehya F, Lotfi M, Rasa I (2010) Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: a geological, mineralogical and isotopic (S, Pb) study. J Asian Earth Sci 37:186–194

    Article  Google Scholar 

  • Esmaeili Sevieri A, Karimpour MH, Malekzadeh Shafaroudi A, Mahboubi A (2020) Knowledge-driven approach to exploration of carbonate hosted zinc and lead deposits, case study: North Irankuh district, Isfahan – Iran. J Econ Geol 11(4):565–602 (In Persian)

    Google Scholar 

  • Esmaeili Sevieri A, Karimpour MH, Malekzadeh Shafaroudi A, Mahboubi A, Song Y (2019) Irankuh lead-zinc mining district, southern Isfahan, Iran: evidences of geology, fluid inclusion and isotope geochemistry. Periodico di Mineralogia 88:45–64

    Google Scholar 

  • Förster H (1978) Mesozoic–Cenozoic metallogenesis in Iran. J Geological Soc 135(4):443–455

    Article  Google Scholar 

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Ghazban F, McNutt RH, Schwarcz HP (1994) Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west-central Iran. Econ Geol 89(6):1262–1278

    Article  Google Scholar 

  • Gholizadeh K, Rasa I, Yazdi M, Boni M (2019) Mineralogy and geochemistry of Zincian-dolomite in Bahramtaj deposit, Yazd, Central Iran. Iranian J Crystallography Mineral 27(1):95–108

    Google Scholar 

  • Ghorbani M (2002) An introduction to economic geology of Iran. Natl Geosci Database Iran 2:695 (in Persian)

    Google Scholar 

  • Ghorbani M (2013) Economic geology of Iran, vol 581. Springer, Berlin

  • Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381:235–273

    Article  Google Scholar 

  • Hassanzadeh J, Wernicke BP (2016) The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics 35(3):586–621

    Article  Google Scholar 

  • Heyl AV (1983) Geologic characteristics of three Mississippi Valley-type districts. In: Kisvarsanyi G, Grant SK, Pratt WP, Koenig JW (eds) Proceedings of International Conference on Mississippi Valley Type Lead-Zinc Deposits. University of Missouri-Rolla Press, Rolla, pp 27–30

  • Honarmand M, Ranjbar H, Shahabpour J (2012) Application of principal component analysis and spectral angle mapper in the mapping of hydrothermal alteration in the Jebal–Barez Area, southeastern Iran. Resource Geology 62(2):119–139

    Article  Google Scholar 

  • Hosseini SA, Abedi M (2015) Data envelopment analysis: a knowledge-driven method for mineral prospectivity mapping. Comput Geosci 82:111–119

    Article  Google Scholar 

  • Hosseini-Dinani H, Aftabi A (2016) Vertical lithogeochemical halos and zoning vectors at Goushfil Zn–Pb deposit, Irankuh district, southwestern Isfahan, Iran: implications for concealed ore exploration and genetic models. Ore Geol Rev 72:1004–1021

    Article  Google Scholar 

  • Hosseini-Dinani H, Aftabi A, Esmaeili A, Rabbani M (2015) Composite soil-geochemical halos delineating carbonate-hosted zinc–lead–barium mineralization in the Irankuh district, Isfahan, west-central Iran. J Geochem Explor 156:114–130

    Article  Google Scholar 

  • Hwang CL, Yoon K (1981) Methods for multiple attribute decision making. In: Multiple attribute decision making. Springer, Berlin, Heidelberg, pp 58–191

  • Janković S (1997) The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Mineralium Deposita 32(5):426–433

    Article  Google Scholar 

  • Karimpour MH, Malekzadeh Shafaroudi A, Alaminia Z, Esmaeili Sevieri A, Stern CR (2019) New hypothesis on time and thermal gradient of subducted slab with emphasis on dolomitic and shale host rocks in formation of Zn-Pb deposits of Irankuh Ahangaran belt. J Econ Geol 10(2) (In Persian)

  • Karimpour MH, Sadeghi M (2018) Dehydration of hot oceanic slab at depth 30–50 km: KEY to formation of Irankuh-Emarat PbZn MVT belt, Central Iran. J Geochem Explor 194:88–103

    Article  Google Scholar 

  • Karimpour MH, Sadeghi M (2020) Reply to comments on “Dehydration of hot oceanic slab at depth 30–50 km: key to formation of Irankuh-Emarat Pb-Zn MVT belt, Central Iran” by Mohammad Hassan Karimpour and Martiya Sadeghi by. J Geochem Explor 210:106455

    Article  Google Scholar 

  • Karimzadeh A (1992) Investigation on type, mineralogical–geochemical relationships, and the possible genesis of Emarat lead–zinc mine (Arak). M.Sc. Thesis, Tarbyat-Moallem University, Tehran (in Persian)

  • Kholghi MH (2004) Varcheh Quadrangle Map 1:100,000, unpublished.

  • Leach DL, Sangster DF (1993) Mississippi valley-type lead-zinc deposits. In: Kirkham RV, Sinclair WD, Thorp RI, Duke JM (eds) Mineral Deposit Modeling, vol 40. Geological Association of Canada Special Paper, pp 289–314

  • Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead-zinc deposits: a global perspective. Economic Geology 100th Anniversary Volume 561-608.

  • Leach DL, Taylor RD, Fey DL, Diehl SF, Saltus RW (2010) A deposit model for Mississippi Valley-type lead-zinc ores. Mineral deposit models for resource assessment, 52.

  • Lisenbee AL, Uzunlar N (1988) Zn-Pb mineralization at Anjireh-Vejin mines, Sanandaj-Sirjan zone, Iran. In: Kisvarsanyi G, Grant SK (eds) North American Conference on Tectonic Control of Ore Deposits and the Vertical and Horizontal Extent of Ore Systems. University of Missouri-Rolla, pp 180–187

  • Liu Y, Song Y, Fard M, Zhou L, Hou Z, Kendrick MA (2019) Pyrite Re-Os age constraints on the Irankuh Zn-Pb deposit, Iran, and regional implications. Ore Geol Rev 104:148–159

    Article  Google Scholar 

  • Lydon JW (1995) Sedimentary exhalative sulphides (SEDEX). In: Eckstrand OR, Sinclair WD, Thorpe RI (eds) Geology of Canadian mineral deposit types. Geological Survey of Canada, Canada, pp 130–152

  • Maanijou M, Fazel ET, Hayati S, Mohseni H, Vafaei M (2020) Geology, fluid inclusions, C–O–S–Pb isotopes and genesis of the Ahangaran Pb-Ag (Zn) deposit, Malayer-Esfahan Metallogenic Province, western Iran. J Asian Earth Sci 195:104339

    Article  Google Scholar 

  • Maghfouri S, Hosseinzadeh MR, Rajabi A, Choulet F (2018) A review of major non-sulfide zinc deposits in Iran. Geosci Front 9(1):249–272

    Article  Google Scholar 

  • Mahmoodi P, Rastad E, Rajabi A, Peter JM (2018) Ore facies, mineral chemical and fluid inclusion characteristics of the Hossein-Abad and Western Haft-Savaran sediment-hosted Zn-Pb deposits, Arak Mining District, Iran. Ore Geol Rev 95:342–365

    Article  Google Scholar 

  • Malczewski J (2006) Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int J Appl Earth Observ Geo Inform 8:270–277

    Google Scholar 

  • Mansouri E, Feizi F, Rad AJ, Arian M (2017) A comparative analysis of index overlay and topsis (based on ahp weight) for iron skarn mineral prospectivity mapping, a case study in Sarvian area, Markazi Province, Iran. Maden Tetkik ve Arama Dergisi 155(155):47–160

    Google Scholar 

  • Meshkani SA, Mehrabi B, Yaghubpur A, Sadeghi M (2013) Recognition of the regional lineaments of Iran: using geospatial data and their implications for exploration of metallic ore deposits. Ore Geol Rev 55:48–63

    Article  Google Scholar 

  • Mihalasky MJ, Bonham-Carter GF (2001) Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Nat Resourc Res 10(3):209–226

    Article  Google Scholar 

  • Mirnejad H, Simonetti A, Molasalehi F (2011) Pb isotopic compositions of some Zn–Pb deposits and occurrences from Urumieh–Dokhtar and Sanandaj–Sirjan zones in Iran. Ore Geol Rev 39(4):181–187

    Article  Google Scholar 

  • Moghadam HS, Whitechurch H, Rahgoshay M, Monsef I (2009) Significance of Nain-Baft ophiolitic belt (Iran): short-lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone. C. R. Geosc. 341:1016–1028

    Article  Google Scholar 

  • Momenzadeh M (1976) Stratabound lead–zinc ores in the Lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west central Iran), lithology, metal content, zonation and genesis. University of Heidelberg, Heidelberg, p 300

  • Momenzadeh M, Rastad E (1973) Zinc, lead and iron mineralization in Cretaceous carbonatic rocks in the West-Central Iran metallogenic zone. Geol Survey Iran 4

  • Motevali K, Behzadi M, Yazdi M (2018) Mineralogy and geochemistry of Nodoushan Zn-Pb deposit A transitional deposit in UDMA Central Iran. Geosciences:119–130

  • Motevali K, Behzadi M, Yazdi M (2019) Geochemical evolution in Nodusahn Zn-Pb hydrothermal deposit with an emphasis on ore mineralography and sulfide analysis. Iranian J Crystallography Mineral 27(1):95–108

    Article  Google Scholar 

  • Movahednia M, Rastad E, Rajabi A, Maghfouri S, González FJ, Alfonso P, Choulet F, Canet C (2020) The Ab-Bagh Late Jurassic-Early Cretaceous sediment-hosted Zn-Pb deposit, Sanandaj-Sirjan zone of Iran: ore geology, fluid inclusions and (S–Sr) isotopes. Ore Geol Rev 121:103484

    Article  Google Scholar 

  • Nadimi A (2010) Active strike-slip faults in the central part of the Sanandaj-Sirjan Zone of Zagros Orogen (Iran). Ph.D thesis, University of Warsaw, Poland, p 121

  • Nadimi A, Konon A (2012) Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran. J Struct Geol 40:2–16

    Article  Google Scholar 

  • Nejadhadad M, Taghipour B, Lentz DR (2018) Geochemical, isotopic, and fluid inclusion signatures of Zn-Pb mineralization in the Tiran mining district, Isfahan, Sanandaj-Sirjan zone (Iran). Ore Geol Rev 101:854–869

    Article  Google Scholar 

  • Nejadhadad M, Taghipour B, Zarasvandi A, Somarin AK (2016) Geological, geochemical, and fluid inclusion evidences for the origin of the Ravanj Pb? Ba? Ag deposit, north of Delijan city, Markazi Province, Iran. Turkish J Earth Sci 25(2):179–200

    Article  Google Scholar 

  • Niroomand S, Haghi A, Rajabi A, Shabani AAT, Song YC (2019) Geology, isotope geochemistry, and fluid inclusion investigation of the Robat Zn-Pb-Ba deposit, Malayer-Esfahan metallogenic belt, southwestern Iran. Ore Geol Rev 112:103040

    Article  Google Scholar 

  • Ohle EL (1959) Some considerations in determining the origin of ore deposits of the Mississippi Valley type. Econ Geol 54(5):769–789

    Article  Google Scholar 

  • Ohle EL (1980) Some considerations in determining the origin of ore deposits of the Mississippi valley type; Part II. Economic Geol 75(2):161–172

    Article  Google Scholar 

  • Ohle EL (1985) Breccias in Mississippi Valley-type deposits. Econ Geol 80:1736–1752

    Article  Google Scholar 

  • Onut S, Soner S (2008) Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Waste Manag 28:1552–1559

    Article  Google Scholar 

  • Paradis S, Hannigan P, Dewing K (2007) Mississippi Valley Type lead – zinc deposits, Mineral deposits division, Special Publication, vol 5, pp 185–203

  • Parsa M, Maghsoudi A (2018) Controls on Mississippi Valley-Type Zn-Pb mineralization in Behabad district, Central Iran: constraints from spatial and numerical analyses. J Afr Earth Sci 140:189–198

    Article  Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M (2017) An improved data-driven fuzzy mineral prospectivity mapping procedure; cosine amplitude-based similarity approach to delineate exploration targets. Int J Appl Earth Observ Geoinform 58:157–167

    Article  Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M (2018) Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran. Ore Geol Rev 92:97–112

    Article  Google Scholar 

  • Pazand K, Hezarkhani A, Ataei M (2012) Using TOPSIS approaches for predictive porphyry Cu potential mapping: a case study in Ahar-Arasbaran area (NW, Iran). Computers Geosci 49:62–71

    Article  Google Scholar 

  • Pirajno F (2009) Hydrothermal Processes and Mineral Systems. Springer Sicence, Perth, p 1250

  • Porwal A, Carranza EJM, Hale M (2003) Artificial neural networks for mineral–potential mapping: a case study from Aravalli Province, Western India. Nat Resourc Res 12:156–171

    Google Scholar 

  • Porwal A, Carranza EJM, Hale M (2004) A hybrid neuro-fuzzy model for mineral potential mapping. Mathematical Geol 36:803–826

    Article  Google Scholar 

  • Rahimpour-Bonab H (1991) Investigation on lead–zinc deposits of South of Arak region (Emarat). M.Sc. Thesis, Tehran University, Tehran (in Persian)

  • Rajabi A, Mahmoodi P, Rastad E, Niroomand S, Canet C, Alfonso P, Shabani AAT, Yarmohammadi A (2019) Comments on “Dehydration of hot oceanic slab at depth 30–50 km: key to formation of Irankuh-Emarat Pb-Zn MVT belt, Central Iran” by Mohammad Hassan Karimpour and Martiya Sadeghi. J Geochem Explor 205:106346

    Article  Google Scholar 

  • Rajabi A, Rastad E, Canet C (2012) Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. Int Geol Rev 54(14):1649–1672

    Article  Google Scholar 

  • Rajabi A, Rastad E, Canet C (2013) Metallogeny of Permian–Triassic carbonate-hosted Zn–Pb and F deposits of Iran: a review for future mineral exploration. Australian J Earth Sci 60(2):197–216

    Article  Google Scholar 

  • Rastad E (1981) Geological, mineralogical, and ore facies investigations on the Lower Cretaceous stratabound Zn-Pb (Ba-Cu-) deposits of the Irankuh Mountain Range, Esfahan, West Central Iran (Doctoral dissertation).

  • Sahandi MR, Radfar J, Hoseinidoust J, Mohajjel M (2006) Shazand quadrangle map 1:100,000. Geological Survey and Mineral Exploration of Iran.

  • Sangster D (1983) Mississippi Valley-type deposits: a geological melange. In: International Conference on Mississippi Valley-type lead-zinc deposits, proceedings volume. EUA, University of Missouri-Rolla, Rolla, Missouri, pp 7–19

    Google Scholar 

  • Sangster D (1995) Mississipi Valley-Type Lead-Zinc. In: Eckstrand OR, Sinclair WD, Thorpe RI (eds) Geology of Canadian Mineral Deposit Types. Geological Survey of Canada, Canada, pp 253–261

  • Sawkins FJ (1990) Integrated tectonic-genetic model for volcanic-hosted massive sulfide deposits. Geology 18(11):1061–1064

    Article  Google Scholar 

  • Şengör A (1990) A new model for the late Palaeozoic—Mesozoic tectonic evolution of Iran and implications for Oman. Geological Society, London, Special Publications 49(1):797–831

    Article  Google Scholar 

  • Seyed Emami K, Brants A, Bozorgnia F (1973) Stratigraphy of the Cretaceous rocks. SE of Esfahan. Contribution to the Paleontology Stratigraphy of Iran. Iran Geol Surv Deputy 20(Pt. 2):5–27

    Google Scholar 

  • Shahrestani S, Mokhtari AR (2017a) Dilution correction equation revisited: the impact of stream slope, relief ratio and area size of basin on geochemical anomalies. J Afr Earth Sci 128:16–26

    Article  Google Scholar 

  • Shahrestani S, Mokhtari AR (2017b) Improved detection of anomalous catchment basins by incorporating drainage density in dilution correction of geochemical residuals. Geochemistry: Exploration, Environment, Analysis:2016–2015

  • Shahrestani S, Mokhtari AR, Carranza EJM, Hosseini-Dinani H (2019) Comparison of efficiency of techniques for delineating uni-element anomalies from stream sediment geochemical landscapes. J Geochem Explor 197:184–198

    Article  Google Scholar 

  • Shamsipour R, Kermani N, Bagheri H (2011) Geothermometric and isotopic studies of Kohroyeh Pb ore deposit (SW Shahreza). Iranian J Petrol 4:35–44

    Google Scholar 

  • Shojaat B (1992) Geochemical investigations in order to propose a possible model for lead–zinc mineralization in the Emarat region. M.Sc. Thesis, Islamic Azad University, North Tehran Branch, Tehran (in Persian)

  • Snyder FG (1967) Criteria for origin of stratiform ore bodies with application to southeast Missouri. In: Brown JS (ed) Genesis of stratabound lead-zinc-barite-fluorite deposits in carbonate rocks. Economic Geology Monographs, vol 3. Economic Geology Publishing, Lancaster, pp 1–13

  • Song YC, Liu YC, Hou ZQ, Fard M, Zhang HR, Zhuang LL (2019) Sediment-hosted Pb–Zn deposits in the Tethyan domain from China to Iran: characteristics, tectonic setting, and ore controls. Gondwana Res 75:249–281

    Article  Google Scholar 

  • Stocklin J (1968) Structural history and tectonics of Iran: a review. AAPG Bull 52(7):1229–1258

    Google Scholar 

  • Tavana M, Hatami-Marbini A (2011) A group AHP-TOPSIS framework for human spaceflight mission planning at NASA. Expert Syst Appl 38:13588–13603

    Google Scholar 

  • Taylor D (2000) Introduction: A ‘soft-rock’ petroleum-type approach to exploration for ‘hard-rock’minerals in sedimentary basins, In organic matter and mineralisation: thermal alteration, hydrocarbon generation and role in metallogenesis. Springer, Dordrecht, pp 1–12

  • Vanaei M (1998) Textural, structural and geochemical characteristics of Emarat Pb– Zn mine (Arak). M.Sc. Thesis, Shahid Bahonar University, Kerman (in Persian)

  • Vearncombe JR, Chisnall AW, Dentith MC, Dörling SL, Rayner MJ, Holyland PW (1996) Structural controls on Mississippi Valley type mineralization, the southeast Lennard Shelf, Western Australia. In: Sangster DF (ed) Carbonate-hosted lead-zinc deposits: Society of Economic Geologists, Special Publication Number, vol 4, pp 74–95

  • Vearncombe JR, Dentith M, Doerling S, Reed A, Cooper R, Hart J, Muhling P, Windrim D, Woad G (1995) Regional-and prospect-scale fault controls on Mississippi Valley-type Zn-Pb mineralization at Blendevale, Canning Basin, Western Australia. Econ Geol 90(1):181–186

    Article  Google Scholar 

  • Wilkinson JJ (2014) Sediment-hosted zinc-lead mineralization: processes and perspectives, Treatise on Geochemistry, 2nd edn. Elsevier, pp 219–248

  • Xiang Z-Z, Zhou J-X, Luo K (2020) New insights into the multi-layer metallogenesis of carbonated-hosted epigenetic Pb-Zn deposits: a case study of the maoping Pb-Zn deposit, South China. Ore Geol Rev:103538

  • Yousefi M, Carranza EJM (2015a) Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Comput Geosci 74:97–109

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2015b) Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Comput Geosci 83:72–79

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2015c) Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput Geosci 79:69–81

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2016) Data-driven index overlay and Boolean logic mineral prospectivity modeling in Greenfields exploration. Nat Resourc Res 25(1):3–18

    Article  Google Scholar 

  • Yousefi M, Nykänen V (2016) Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. J Geochem Explor 164:94–106

    Article  Google Scholar 

  • Zahedi M (1976) Explanatory Text of the Isfahan Quadrangle Map:1:250,000; Geological Quadrangle F8. Geological Survey of Iran, Tehran

  • Zamanian H (1993) Mineralogy, paragenesis and genesis of Ahangaran Ag-Pb deposit, Malayer. Unpublished MSc. thesis. Tarbiat Moallem University, Tehran, Iran, 280 pp

    Google Scholar 

  • Ziserman A, Momenzadeh M (1972) Study on Arak–Esfahan lead–zinc mines. Geolog Survey Iran 60:16

    Google Scholar 

Download references

Acknowledgements

Iranian National Science Foundation (INSF) is thanked for sponsoring the project the under grant number 97009508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengameh Hosseini-Dinani.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Dinani, H., Yazdi, M. Multi-dataset analysis to assess mineral potential of MVT-type zinc-lead deposits in Malayer-Isfahan metallogenic belt, Iran. Arab J Geosci 14, 673 (2021). https://doi.org/10.1007/s12517-021-06950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06950-6

Keywords

Navigation