Skip to main content
Log in

Probabilistic seismic hazard assessment for two potential nuclear power plant sites in Tunisia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

As part of a feasibility study for a potential electronuclear power plant in Tunisia, a new seismic catalogue and a new seismic source model have been proposed, for Tunisia and adjacent areas. These findings are used in this study to evaluate the seismic hazard for two selected nuclear power plant sites: Marsa-Douiba in the north and Skhira in the southeast. The investigations and the assessment are conducted at a regional scale. The location of these sites and the choice of a regional review extent allow us to consider the entire Tunisian territory as the study area and also to conduct the hazard evaluation at a ‘national level’. In this study, a probabilistic seismic hazard analysis is performed using the R-CRISIS software, and a logic tree is developed to capture uncertainties related to the characterisation of both seismic sources and ground-motion. First, a hazard map of Tunisia for the return period of 475 years is generated to compare it with the ones obtained within previous studies. Then, the 10,000-year return period is considered, and the recommendations of the International Atomic Energy Agency are applied to determine the uniform hazard spectrums and perform disaggregation for the selected sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable

References

  • Abrahamson NA, Silva WJ, Kamai R (2014) Summary of the ASK14 ground motion relation for active crustal regions. Earthq Spectra 30:1025–1055. https://doi.org/10.1193/070913EQS198M

    Article  Google Scholar 

  • Aguilar Meléndez A, Ordaz MG, De la Puente J et al (2018) Sensitivity analysis of seismic parameters in the probabilistic seismic hazard assessment (PSHA) for Barcelona applying the new R-CRISIS. Comput y Sist 22:1099–1122. https://doi.org/10.13053/cys-22-4-3084

    Article  Google Scholar 

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the mediterranean region, and the Middle East. Seismol Res Lett 81:195–206. https://doi.org/10.1785/gssrl.81.2.195

    Article  Google Scholar 

  • Ambraseys NN (1995) The prediction of earthquake peak ground acceleration in Europe. Earthq Eng Struct Dyn 24:467–490. https://doi.org/10.1002/eqe.4290240402

    Article  Google Scholar 

  • Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dyn 25:371–400. https://doi.org/10.1002/(SICI)1096-9845(199604)25:4<371::AID-EQE550>3.0.CO;2-A

    Article  Google Scholar 

  • Bahrouni N, Bouaziz S, Soumaya A, Ben Ayed N, Attafi K, Houla Y, el Ghali A, Rebai N (2014) Neotectonic and seismotectonic investigation of seismically active regions in Tunisia: a multidisciplinary approach. J Seismol 18:235–256. https://doi.org/10.1007/s10950-013-9395-y

    Article  Google Scholar 

  • Baker JW (2015) Introduction to probabilistic seismic hazard analysis. White Paper Version 2:1

    Google Scholar 

  • Bakun WH (1984) Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in central California. Bull Seismol Soc Americ 74:439–458

    Google Scholar 

  • Bazzurro P, Cornell CA (1999) Disaggregation of seismic hazard. Bull Seismol Soc Am 89:501–520

    Google Scholar 

  • Ben Ayed N, Bouaziz S (2013) Synthèse néotectonique et sismotectonique des deux sites candidats de Marsa Douiba et Skhira, Rapport d’expertise. INM & ONM, Tunis

    Google Scholar 

  • Ben Ayed N, Zargouni F (1990) Carte sismotectonique de la Tunisie à l’échelle 1/1000 000. Fondation Nationale de la Recherche Scientifique, Tunisia

    Google Scholar 

  • Benouar D (1994) Magnitude–intensity and intensity–attenuation relationships for atlas region and Algerian earthquakes. Earthq Eng Struct Dyn 23:717–727. https://doi.org/10.1002/eqe.4290230703

    Article  Google Scholar 

  • Benouar D, Molas GL, Yamazaki F (1996) Earthquake hazard mapping in the Maghreb. Earthq Eng Struct Dyn 25:1151–1164

    Article  Google Scholar 

  • Bommer JJ (2012) Challenges of building logic trees for probabilistic seismic hazard analysis. Earthq Spectra 28:1723–1735. https://doi.org/10.1193/1.4000079

    Article  Google Scholar 

  • Bommer JJ, Scherbaum F, Bungum H et al (2005) On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull Seismol Soc Am 95:377–389. https://doi.org/10.1785/0120040073

    Article  Google Scholar 

  • Bouallègue A, Hamdi H, Attafi K, Ben Abdallah S (2012) Catalogue de sismicité en Tunisie pour l’évaluation des deux sites de Marsa Dhouiba et de Skhira, Rapport R1 (Mission 2, Phase 1). Tunis

    Google Scholar 

  • Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24:139–171. https://doi.org/10.1193/1.2857546

    Article  Google Scholar 

  • Chiou BSJ, Youngs RR (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 24:173–215. https://doi.org/10.1193/1.2894832

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Google Scholar 

  • Cornell CA, Vanmarcke EH (1969) The major influences on seismic risk. In: Proceedings of the 4th World Conference on Earthquake Engineering. Santiago, pp 69–83

  • Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to central Europe and rock sites. J Seismol 10:137–156. https://doi.org/10.1007/s10950-005-9006-7

    Article  Google Scholar 

  • Esteva L (1970) Regionalización sísmica de méxico para fines de ingeniería. Instituto de Ingeniería UNAM SID246:229–246

  • Esteva L, Villaverde R (1973) Seismic risk, design spectra and structural reliability. In: Proceedings of the 5th World Conference on Earthquake Engineering, pp 2586–2597

    Google Scholar 

  • Gaieb S, Jallouli C (2017) New overview of the neotectonic and seismotectonic studies in Tunisian domains. Arab J Geosci 10:506. https://doi.org/10.1007/s12517-017-3276-6

    Article  Google Scholar 

  • Graizer V (2018) GK17 ground-motion prediction equation for horizontal PGA and 5% damped PSA from shallow crustal continental earthquakes. Bull Seismol Soc Am 108:380–398. https://doi.org/10.1785/0120170158

    Article  Google Scholar 

  • Gueddiche M, Harjono H, Ben Ayed N et al (1992) Analysis of seismicity and evidence of active faulting in northern Tunisia. Bull Soc Geol France 163:415–425

    Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188. https://doi.org/10.1038/156371a0

    Article  Google Scholar 

  • Hamlaoui M, Vanneste K, Baddari K, Louail L, Vleminckx B, Demdoum A (2017) Probabilistic seismic hazard assessment in the northeastern part of Algeria. Arab J Geosci 10:238. https://doi.org/10.1007/s12517-017-3011-3

    Article  Google Scholar 

  • Heaton TH, Tajima F, Mori AW (1986) Estimating ground motions using recorded accelerograms. Surv Geophys 8:25–83. https://doi.org/10.1111/1523-1747.ep12470142

    Article  Google Scholar 

  • Hfaiedh M (1983) Etude sismotectonique de la Tunisie Nord orientale. Université Paris-Saclay

  • Hfaiedh M, Ben Ayed N, Dorel J (1985) Etude néotectonique et séismotectonique de la Tunisie nord-orientale. Note du Service Géologique Tunisie 16:41–56

    Google Scholar 

  • Htwe YMM, WenBin S (2009) Gutenberg-richter recurrence law to seismicity analysis of southern segment of the sagaing fault and its associate components. World Acad Sci Eng Technol 38:1201–1204

    Google Scholar 

  • International Atomic Energy Agency (2002) Evaluation of seismic hazards for nuclear power plants, Safety guide No. NS-G-3.3. Vienna

  • International Atomic Energy Agency (2010) Seismic hazards in site evaluation for nuclear installations, Specific Safety Guide No. SSG-9. Vienna

  • Jimenez MJ, Garcia-Fernandez M, GSHAP Ibero-Maghreb Working Group (1999) Seismic hazard assessment in the Ibero-Maghreb region. Ann. di Geofis. 42:1057–1065

    Google Scholar 

  • Jiménez MJ, Giardini D, Grünthal G et al (2001) Unified seismic hazard modelling throughout the Mediterranean region. Boll di Geofis Teor ed Appl 42:3–18

    Google Scholar 

  • Jordanovski L, Dojcinovski D, Petrovski J, et al (1991) Investigations for elaboration of seismotectonic map and draft seismic design code of Tunisia, volume II : seismic hazard analysis and seismic zoning map of Tunisia. Skopje - Tunis

    Google Scholar 

  • Ksentini A, Romdhane NB (2014) Updated seismic hazard assessment of Tunisia. Bull Earthq Eng 12:647–670. https://doi.org/10.1007/s10518-013-9548-y

    Article  Google Scholar 

  • Mohanty WK, Verma AK (2013) Probabilistic seismic hazard analysis for Kakrapar atomic power station, Gujarat, India. Nat Hazards 69:919–952. https://doi.org/10.1007/s11069-013-0744-5

    Article  Google Scholar 

  • Molas GL, Yamazaki F (1995a) The effect of source depth and local site to the attenuation characteristics of response spectra. Proceedings of The JSCE Earthquake Engineering Symposium, In, pp 69–72

    Google Scholar 

  • Molas GL, Yamazaki F (1995b) Attenuation of earthquake ground motion in Japan including deep focus events. Bull Seismol Soc Am 85:1343–1358

    Google Scholar 

  • Montassar S, Ben Mekki O, Limama W (2014) Evaluation de l’aléa sismique régional de deux sites candidats pour l’installation d’une centrale électronucléaire en Tunisie. Proceedings of the Congrès Maghrébin de Génie Parasismique. Rabat, In

    Google Scholar 

  • Mouloud H, Badreddine S (2017) Probabilistic seismic hazard assessment in the Constantine region. Northeast of Algeria. Arab J Geosci 10. https://doi.org/10.1007/s12517-017-2876-5

  • Mourabit T, Abou Elenean KM, Ayadi A, Benouar D, Ben Suleman A, Bezzeghoud M, Cheddadi A, Chourak M, ElGabry MN, Harbi A, Hfaiedh M, Hussein HM, Kacem J, Ksentini A, Jabour N, Magrin A, Maouche S, Meghraoui M, Ousadou F, Panza GF, Peresan A, Romdhane N, Vaccari F, Zuccolo E (2014) Neo-deterministic seismic hazard assessment in North Africa. J Seismol 18:301–318. https://doi.org/10.1007/s10950-013-9375-2

    Article  Google Scholar 

  • Nocquet JM (2012) Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics 579:220–242. https://doi.org/10.1016/j.tecto.2012.03.037

    Article  Google Scholar 

  • Nocquet JM, Calais E (2004) Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure Appl Geophys 161:661–681. https://doi.org/10.1007/s00024-003-2468-z

    Article  Google Scholar 

  • Ordaz M, Salgado-Galvez MA (2018) R-CRISIS validation and verification document. ERN Technical Report. Mexico City, Mexico

  • Pondrelli S, Salimbeni S, Ekström G, Morelli A, Gasperini P, Vannucci G (2006) The Italian CMT dataset from 1977 to the present. Phys Earth Planet Inter 159:286–303. https://doi.org/10.1016/j.pepi.2006.07.008

    Article  Google Scholar 

  • Roshan AD, Basu PC (2010) Application of PSHA in low seismic region: a case study on NPP site in peninsular India. Nucl Eng Des 240:3443–3454. https://doi.org/10.1016/j.nucengdes.2010.04.037

    Article  Google Scholar 

  • Rueda J, Mezcua J (2002) Estudio del terremoto de 23 de Septiembre de 2001 en Pego (Alicante). Obtención de una relación mbLg-Mw para la Península Ibérica. Rev Soc Geol España 15:159–173

    Google Scholar 

  • Sabetta F, Lucantoni A, Bungum H, Bommer JJ (2005) Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights. Soil Dyn Earthq Eng 25:317–329. https://doi.org/10.1016/j.soildyn.2005.02.002

    Article  Google Scholar 

  • Soumaya A, Ben Ayed N, Delvaux D, Ghanmi M (2015) Spatial variation of present-day stress field and tectonic regime in Tunisia and surroundings from formal inversion of focal mechanisms: geodynamic implications for central Mediterranean. Tectonics 34:1154–1180. https://doi.org/10.1002/2015TC003895

    Article  Google Scholar 

  • Soumaya A, Ben Ayed N, Khayati Ammar H et al (2016) Seismotectonic and seismic hazards map of Tunisia. CGMW /UNESCO

Download references

Acknowledgements

This research has been carried out in collaboration with Institut National de la Météorologie (INM), which is the National Institute of Meteorology. The authors wish to thank the INM group: Samir Ben Abdallah, Kheredine Attafi and Atef Bouallegue for the scientific discussion and for their valuable comments on this paper.

Author information

Authors and Affiliations

Authors

Contributions

Emna Jarraya, Sami Montassar, Othman Ben Mekki, and Hassene Hamdi contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript

Corresponding author

Correspondence to Emna Jarraya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable

Additional information

Responsible Editor: Abdullah M. Al-Amri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarraya, E., Montassar, S., Ben Mekki, O. et al. Probabilistic seismic hazard assessment for two potential nuclear power plant sites in Tunisia. Arab J Geosci 14, 167 (2021). https://doi.org/10.1007/s12517-021-06536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06536-2

Keywords

Navigation