Skip to main content
Log in

Updated seismic hazard assessment of Tunisia

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Modern earthquake loss models make use of earthquake catalogs relevant to the seismic hazard assessment upon seismicity and seismotectonic analysis. The main objective of this paper is to investigate a recently compiled catalog (National Institute of Meteorology or INM catalog: 412-2011) and to generate seismic hazard maps through classical probabilistic seismic hazard assessment (PSHA) and smoothed-gridded seismicity models for Tunisia. It is now established with the local earthquake bulletin that the recent seismicity of Tunisia is sparse and moderate. Therefore, efforts must be undertaken to elaborate a robust hazard analysis for risk assessment and seismic design purposes. These recommendations follow the recently published reports by the World Bank that describe the seismic risk in Tunis City as being beyond a tolerable level with an MSK intensity level of VII. Some attempts were made during the past two decades to assess the seismic hazard for Tunisia and they have mostly failed to properly investigate the historical and instrumental seismicity catalog. This limitation also exists for the key aspect of epistemic and random uncertainties impact on the final seismic hazard assessment. This study also investigates new ground motion prediction equations suitable for use in Tunisia. The methodology applied herein uses, for the first time in PSHA of Tunisia, seismicity parameters integrated in logic tree framework to capture epistemic uncertainties through three different seismic source models. It also makes use of the recently released version of OpenQuake engine; an open-source tool for seismic hazard and risk assessment developed in the framework of the Global Earthquake Model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

EMSC:

Euro-Mediterranean Seismological Centre

FMD:

Frequency magnitude distribution

GEM:

Global Earthquake Model

GMPE:

Ground motion predictive equation

GR:

Gutenberg Richter

GSHAP:

Global seismic hazard assessment program

INM:

National Institute of Meteorology

ISC:

International Seismological Centre

NGA:

Next generation of attenuation

PSA:

Pseudo spectral acceleration

PSHA:

Probabilistic seismic hazard assessment

References

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East. Seismol Res Lett 81(2):195–206

    Google Scholar 

  • Ambraseys NN (1962). The seismicity of Tunis. Ann Geofis 15:233–244

    Google Scholar 

  • Amiri A, Chaqui A, Nasr IH, Inoubli MH, Ben Ayed N, Tlig S (2011) Role of preexisting faults in the geodynamic evolution of Northern Tunisia, insights from gravity data from the Medjerda valley. Tectonophysics 506:1–10. doi:10.1016/j.tecto.2011.03.004

    Article  Google Scholar 

  • Attafi A (1997) Generality about seismicity and the seismological network of Tunisia. Bull Int Inst Seismol Earthq Eng 3:357–389

    Google Scholar 

  • Ben Ayed N, Zargouni F (1990) Carte sismotectonique de la Tunisie. Tunis: ministère de l’Éducation de l’Enseignement supérieur et de la Recherche scientifique (in French)

  • Ben Ayed N (1993) Evolution tectonique de l’Avant-pays de la chaîne alpine de Tunisie du début du Mésozoïque à l’Actuel, Annale des Mines et de la Géologie de Tunisie 32, 286 pp (in French)

  • Benouar D (1994) Geographic distribution of earthquakes in the Maghreb. Annali di Geofisica XXXVII(4)

  • Benouar D, Molas GL, Yamakazi F (1996) Earthquake hazard mapping in the Maghreb countries: Algeria, Morocco, Tunisia. Earthq Eng Struct Dyn 25(10):1151–1164

    Article  Google Scholar 

  • Bollinger GA et al (1993) A comparison of earthquake damage areas as a function of magnitude across the United States. Bull Seismol Soc Am 83:1064–1080

    Google Scholar 

  • Bouaziz S, Barrier E, Soussi M, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253

    Article  Google Scholar 

  • Castany G (1954) L’accident Sud-tunisien, son âge et ses relations avec l’accident Sudatlasique d’Algérie. Comptes Rendus de l’Académie des Sciences de Paris, T.238, pp 916–918 (in French)

  • Chiou BS-J, Youngs RR (2008) A NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectr 24(1):173–215. February 2008; \(\copyright \) 2008, Earthquake Engineering Research Institute

    Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Google Scholar 

  • Delavaud E, Cotton F, Akkar S, Scherbaum F, Danciu L, Beauval C, Drouet S, Douglas J, Basili R, Abdullah Sandikkaya M, Segout M, Faccioli E, Theodoulidis N (2012) Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. J Seismol 16:451–473. doi:10.1007/s10950-012-9281-z

    Article  Google Scholar 

  • Deniz A (2006) Estimation of earthquake insurance premium rates based on stochastic methods, M.Sc. Thesis, Civil Engineering Department, Middle East Technical University, Ankara

  • Dhahri F, Boukadi N (2010) The evolution of pre-existing structures during the tectonic inversion process of the Atlas chain of Tunisia. J Afr Earth Sci 56:139–148

    Article  Google Scholar 

  • Dlala M, Kacem J (2009) Aléa sismique régional du grand Tunis et ses environs (Tunisie nord orientale), Annales du ministère de l’Equipement, de l’Habitat et de l’Aménagement du Territoire (in French)

  • Douglas J (2011) Ground-motion prediction equations 1964–2010, PEER 2011/102, April 2011, 455 pp

  • EMSC Newsletter Number 22 (2007) Special issue funded by EERWEM EC project (INCO-CT-2005-015107), No ISSN: 1607–1980

  • ETAP, Enterprise Tunisienne d’Arctivités Pétrolières ETAP (2003) Tunisia open acreage. Conception and Printing SIMPACT Publishing Co., 83 p (in French)

  • Frankel A (1995) Mapping seismic hazard in the central eastern United States. Seismol Res Lett 66(4):8–21

    Article  Google Scholar 

  • Gardini D, di Donato M, Boshi E (1997) Calibration of magnitude scales for earthquakes of the Mediterranean. J Seismol 1:161–180

    Article  Google Scholar 

  • Gardner JK, Knopoff L (1974) is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Google Scholar 

  • Giardini D, Grünthal G, Shedlock KM, Zhang P (1999) The GSHAP global seismic hazard map. Ann Geophys 42:1225–1230

    Google Scholar 

  • Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seismol 16(3):535–570. doi:10.1007/s10950-012-9302-y

    Article  Google Scholar 

  • Gutenberg B, Richter F (1954) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350

    Article  Google Scholar 

  • Hamdache M, Pelaez JA, Talbi A, Lopez Casado C (2010) A unified catalog of main earthquakes for northern algeria from a.d. 856 to, 2008. Seismol Res Lett 81(5) doi:10.1785/gssrl.81.5.732

  • Hussein HM, Elenean KMA, Marzouk IA, Peresan A, Korrat IM, Abu El-Nader E, Panza GF, El-Gabry MN (2008) Integration and magnitude homogenization of the Egyptian earthquake catalogue. Nat Hazards 47:525–546. doi:10.1007/s11069-008-9237-3

    Article  Google Scholar 

  • H’faiedh M, Allouche M (1993) seismic hazard in Tunisia; the practice of seismic earthquake hazard assessment, International Association of Seismology and Physics of the Earth’s Interior (IASPEI) and European Seismological Commission (ESC)

  • Jordanovsky (1991) INM-IZIIS working group, Report 500-91-61 (1991), Investigation for elaboration of seismotectonic map and draft seismic design code of Tunisia, Volume II: Seismic hazard analysis and seismic zoning map of Tunisia

  • Jiménez MJ, Giardini D, Grünthal G (2001) Unified seismic hazard modelling throughout the Mediterranean region. Bollettino di geofisica teorica ed applicata 42(1–2):3–18

    Google Scholar 

  • Kijko A (2004) Estimation of the maximum earthquake magnitude, \(\text{ m }_{\rm max}\), Pure. Appl Geophys 161:1655–1681 0033-4553/04/081655-27 doi:10.1007/s00024-004-2531-4

  • Klett KR (2001) Total petroleum systems of the Pelagian Province, Tunisia, Libya, Italy, and Malta–The Bou Dabbous-Tertiary and Jurassic-Cretaceous Composite, U.S. Geological Survey Bulletin 2202-D

  • Ksentini A (2004) Apport des systèmes d’information géographique dans l’analyse et la gestion du risqué sismique, mémoire de mastère à l’ENIT, 91 p (in French)

  • Kulkarni RB, Youngs RR, Coppersmith KJ (1984) Assessment of confidence intervals for results of seismic hazard analysis. In Proceedings, eighth world conference on earthquake engineering, San Francisco, vol 1, pp 263–270

  • Lapajne JK, Motnikar BS, Zupancic P (2003) Probabilistic seismic hazard assessment methodology for distributed seismicity. Bull Seismol Soc Am 93(6):2502–2515

    Article  Google Scholar 

  • Mejri L, Regard V, Carretier S, Brusset S, Dlala M (2010) Evidence of Quaternary active folding near Utique (Northeast Tunisia) from tectonic observations and a seismic profile. Comptes Rendus Geoscience. 342(11), 864, # of pages: 9, 01 November 2010. ISSN:16310713

    Google Scholar 

  • Mezcua J (2002) Seism Eng Course. Universidad Politécnica de Madrid report, Madrid (in Spanish)

    Google Scholar 

  • National Institute of Building Sciences (NIBS) (1999) Hazus: earthquake loss estimation methodology, Technical manuals I, II & III, prepared for the Federal Emergency Management Agency. Washington, DC

  • Pelaez JA, Chourak M, Tadili BA, Aït Brahim L, Hamdache M, Lopez Casado C, Martinez Solares JM (2007) A catalog of main Moroccan earthquakes from 1045 to 2005. Seismol Res Lett 78(6). November/December 2007

  • Peña SA, Abdelsalam MG (2006) Orbital remote sensing for geological mapping in southern Tunisia: implication for oil and gas exploration. J Afr Earth Sci 44:203–219

    Article  Google Scholar 

  • Petersen MD, Frankel AD, Harmsen SC, Mueller CS, Haller KM, Wheeler RL, Wesson RL, Zeng YB, Oliver S, Perkins DM, Luco N, Field EH, Wills CJ, Rukstales KS (2008) Documentation for the 2008 Update of the United States National Seismic Hazard Maps, Open-file report. U.S. Geological Survey. No. 2008–1128, 61 pp

  • Pinho R (2012) GEM: a participatory framework for open, state-of-the-art models and tools for earthquake risk assessment worldwide. In: Proceedings of the 15th world conference on earthquake engineering, Lisbon, Portugal

  • Popescu E, Grecu B, Popa M, Rizescu M, Radulian M (2003) Seismic source properties: indications of lithosphere irregular structure on depth beneath Vrancea region. Romanian Rep Phys 55(3):303–321

    Google Scholar 

  • Reasenberg PA (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res 90:5479–5495

    Article  Google Scholar 

  • Romdhane BN, Mechler P, Duval AM, Meneroud P, Vidal S (2000) Microzoning the city of Tunis both background noise and weak motion. In: Proceedings of 12th world conference on earthquake engineering, Auckland, New Zealand, 2000, No. 0343, pp 8

  • Romdhane BN, Mechler P (2002) Seismic site effect, evaluation methods: application to the city of Tunis. Bull Eng Geol Environ 61(3):269–281

    Article  Google Scholar 

  • Rothé JP (1970) Mission d’Information Géologique, Moyen Orient et Afrique du Nord, UNSECO, No série : 1759/BMS. RD/SCE, Paris, février 1970

  • Scordilis EM (2006) Empirical global relations converting MS and mb to moment magnitude. J Seismol doi:10.1007/s10950006-9013-3

  • Sieberg A (1932) Erdbebengeographie. Hanbuch der geophysik, Bd. IV, Abshnitt VI, Berlin 1932, pp 872

  • Silva V, Crowley H, Pagani M, Monelli D, Pinho R (2013) Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment, Natural Hazards, March 2013. doi:10.1007/s11069-013-0618-x

  • SSHAC (1997) NUREG/CR-6372 UCRL-ID-122160 Vol 1 (1997) Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts, senior seismic hazard analysis committee (SSHAC)

  • Stafford PJ, Strasser FO, Bommer JJ (2008) An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region. Bull Earthq Eng 6:149–177. doi:10.1007/s10518-007-9053-2

    Article  Google Scholar 

  • Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings of Microzonation Conference, Seattle, WA, pp 897–909

  • Ulusay R, Tuncay E, Sonmez H, Gokceoglu C (2004) An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Eng Geol 74:265–291

    Article  Google Scholar 

  • Uhrhammer RA (1986) Characteristics of northern and central California seismicity. Earthquake, Notes 57(1), 21(abstract)

    Google Scholar 

  • Vogt J (1993) Further research on the historical seismicity of Tunisia. Terra Nova 5(5):475–476

    Article  Google Scholar 

  • Weatherill G, Pagani M, Monelli D (2012) Openquake modeler: a collection of tools for developing PSHA input models, 15th World conference on earthquake engineering, Lisbon, Portugal, 24th–28th September 2012

  • Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70:1337–1346

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Wiemer S, Wyss M (1994) Seismic quiescence before the Landers (M=7.5) and Big Bare (M=6.5) 1992 earthquakes. Bull Seismol Soc Am 84:900–916

    Google Scholar 

  • World Bank, Egis BCEOM International/IAU-IDF/BRGM (2011) Adaptation au changement climatique et aux désastres naturels des villes côtières d’Afrique du Nord, Phase 1: Évaluation des risques en situation actuelle et à l’horizon 2030 pour la ville de Tunis, GED 80823T (in French)

  • Woo G (1996a) Kernel estimation methods for seismic hazard area source modelling. Bull Seismol Soc Am 86(2):353–362

    Google Scholar 

  • Woo G (1996b) Seismic hazard program: KERFRACT, program documentation

  • Yenier E, Erdogan Ö, Akkar S (2008) Empirical relationships for magnitude and source-to-distance conversions using recently compiled Turkish strong-ground motion database. The 14th world conference on earthquake engineering, Beijing, China, 12–17 October 2008

  • Zabukovec B, Kuka N, Sostaric M, Motnikar BS, Suler T (2007) OHAZ: computer program for seismic hazard calculation. User Manual, Environmental agency of Slovenia and Institute of Seismology of Albania, 65 p

Download references

Acknowledgments

We would like to thank Dr. Gordon Woo from RMS for providing us with “KERGRID” program and also for his precious comments on the use of the smoothed-gridded seismicity approach in the context of moderate seismicity regions such as the case of Tunisia. We are grateful to Dr. Barbara Šket Motnikar from the Environmental Agency of Slovenia who accepted to provide us with OHAZ program and who helped us with her valuable recommendations and support in the use of this program. We wish to express our special thanks to Dr. Mustapha Meghraoui from University of Strasbourg, and Dr. Vunganai Midzi, from the Council of Geosciences of South Africa, for their wide contribution to the revision of this manuscript. We also gratefully acknowledge constructive and detailed reviews made by Dr. Marco Pagani and Dr. Graeme Weatherill from GEM Technical Staff. Particular thanks are addressed to Dr. Rui Pinho for his assistance in improving this work in collaboration with the GEM technical team by using the OpenQuake engine and hazard modeling tools, as well as to Dr. Dario Slejko and three other anonymous experts whose detailed reviews led to improvements of previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ksentini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ksentini, A., Romdhane, N.B. Updated seismic hazard assessment of Tunisia. Bull Earthquake Eng 12, 647–670 (2014). https://doi.org/10.1007/s10518-013-9548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-013-9548-y

Keywords

Navigation