Skip to main content
Log in

Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdullah MA, Al-Mazroui MA (1998) Climatological study of the southwestern region of Saudi Arabia. I. Rainfall analysis. Clim Res 9:213–223. https://doi.org/10.3354/cr009213

    Article  Google Scholar 

  • Ahmed BYM (1997) Climate classification of Saudi Arabia: an application of factor—cluster analysis. GeoJournal 41(1):69–84

    Article  Google Scholar 

  • Ahmed K, Shahid S, Harun S, Nawaz N (2015) Performance assessment of different bias correction methods in statistical downscaling of precipitation. Malays J Civil Eng 2:311–324

    Google Scholar 

  • Ajaaj AA, Mishra AK, Khan AA (2016) Comparison of BIAS correction techniques for GPCC precipitation data in semi-arid climate. Stoch Env Res Risk A 30(6):1659–1675

    Article  Google Scholar 

  • Al JET, Joyce RJ, Janowiak JE et al (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503. https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2

    Article  Google Scholar 

  • Al-Jerash MA (1985) Climate subzones in Saudi Arabia: an application of principal component analysis. Int J Climatol 5(3):307–323

    Article  Google Scholar 

  • Almazroui M (2011) Calibration of TRMM precipitation climatology over Saudi Arabia during 1998–2009. Atmos Res 99:400–414

    Article  Google Scholar 

  • Almazroui M, Dambul R, Islam MN, Jones P (2015) Principal components-based regionalization of the Saudi Arabian climate. Int J Climatol 35(9):2555–2573

    Article  Google Scholar 

  • Almazroui M, Raju PVS, Yusef A et al (2018) Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating. Theor Appl Climatol. https://doi.org/10.1007/s00704-017-2080-2

    Article  Google Scholar 

  • Al-Qurashi M (1981) Synoptic climatology of the precipitation in the southwestern region of Saudi Arabia. Unpublished MSc Thesis, Western Michigan University, Michigan, USA

    Google Scholar 

  • Al-Rashed MF, Sherif MM (2000) Water resources in the GCC countries: an overview. Water Resour Manag 14(1):59–75

    Article  Google Scholar 

  • Alyamani MS (2001) Isotopic composition of precipitation and ground-water recharge in the western province of Saudi Arabia. J Arid Environ 49(4):751–760

    Article  Google Scholar 

  • Ashouri H, Hsu KL, Sorooshian S et al (2015) PERSIANN-CZR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull Am Meteorol Soc 96:69–83. https://doi.org/10.1175/BAMS-D-13-00068.1

    Article  Google Scholar 

  • Atlas (1984) Water Atlas of Saudi Arabia. Water Resource Department Ministry of Agriculture and Water, Riyadh

    Google Scholar 

  • Block PJ, Souza Filho FA, Sun L, Kwon HH (2009) A streamflow forecasting framework using multiple climate and hydrological models. JAWRA J Am Water Resour Assoc 45(4):828–843

    Article  Google Scholar 

  • Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49(7):4187–4205

    Article  Google Scholar 

  • Chen J, St-Denis BG, Brissette FP, Lucas-Picher P (2016) Using natural variability as a baseline to evaluate the performance of bias correction methods in hydrological climate change impact studies. J Hydrometeorol 17(8):2155–2174

    Article  Google Scholar 

  • De Vries A, Feldstein S, Riemer M, Tyrlis E, Sprenger M, Baumgart M et al (2016) Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Q J R Meteorol Soc 142(697):1862–1880

    Article  Google Scholar 

  • Gebregiorgis AS, Tian Y, Peters-Lidard CD, Hossain F (2012) Tracing hydrologic model simulation error as a function of satellite rainfall estimation bias components and land use and land cover conditions. Water Resour Res. https://doi.org/10.1029/2011WR011643

  • Gellert W, Gottwald S, Hellwich M, Ka¨stner H, Ku¨stner H (1989) The VNR concise encyclopedia of mathematics. Van Nostrand Reinhold, New York

    Google Scholar 

  • Gudmundsson L, Bremnes J, Haugen J, Engen-Skaugen T (2012) Downscaling RCM precipitation to the station scale using statistical transformations—a comparison of methods. Hydrol Earth Syst Sci 16(9):3383–3390

    Article  Google Scholar 

  • Hong Y, Hsu K-L, Sorooshian S, Gao X (2004) Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J Appl Meteorol 43(12):1834–1853

    Article  Google Scholar 

  • Hou AY, Kakar RK, Neeck S et al (2014) The global precipitation measurement mission. Bull Am Meteorol Soc 95:701–722. https://doi.org/10.1175/BAMS-D-13-00164.1

    Article  Google Scholar 

  • Hsu K, Gao X, Sorooshian S, Gupta HV (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol 36:1176–1190. https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2

    Article  Google Scholar 

  • Huff F (1970) Sampling errors in measurement of mean precipitation. J Appl Meteorol 9(1):35–44

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ (2010) The TRMM multi-satellite precipitation analysis (TMPA). In: Satellite Precipitation Applications for Surface Hydrology, pp 3–22

    Chapter  Google Scholar 

  • IPCC (2007) Climate Change 2007: impacts, adaptation and vulnerability. Int J Climatol 976. https://doi.org/10.2134/jeq2008.0015br

    Article  Google Scholar 

  • Jakob M, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31(10):1530–1544

    Article  Google Scholar 

  • Kheimi MM, Gutub S (2014) Assessment of remotely sensed precipitation products across the Saudi Arabia region. In: 6th International Conference on Water Resources and arid Environments, pp 16–17

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263

    Article  Google Scholar 

  • Lenderink G, Buishand A, Deursen W v (2007) Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11(3):1145–1159

    Article  Google Scholar 

  • MacLaren IL (1979). Water and agricultural development studies, Arabian. Retrieved from Riyadh, Saudi Arabia.

  • Maliva R, Missimer T (2012) Arid lands water evaluation and management. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Moazami S, Golian S, Kavianpour MR, Hong Y (2013) Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int J Remote Sens 34(22):8156–8171

    Article  Google Scholar 

  • Ngumbi PK (1991) Meteorology of rain events in the southwest of the Arabian Peninsula. University of Wyoming, Laramie

    Google Scholar 

  • Parry M, Canziani O, Palutikof J, van der Linden PJ, Hanson CE (2007) Climate change 2007: impacts, adaptation and vulnerability (vol. 4). Cambridge University Press, Cambridge

    Google Scholar 

  • Pereira Filho AJ, Carbone RE, Janowiak JE, Arkin P, Joyce R, Hallak R, Ramos CG (2010) Satellite precipitation estimates over South America—possible applicability to the water management of large watersheds. JAWRA J Am Water Resour Assoc 46(2):344–360

    Article  Google Scholar 

  • Piani C, Haerter J, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99(1–2):187–192

    Article  Google Scholar 

  • Qin Y, Chen Z, Shen Y, Zhang S, Shi R (2014) Evaluation of satellite precipitation estimates over the Chinese Mainland. Remote Sens 6(11):11649–11672

    Article  Google Scholar 

  • Ragab R, Prudhomme C (2002) SW—soil and water: climate change and water resources management in arid and semi-arid regions: prospective and challenges for the 21st century. Biosyst Eng 81(1):3–34

    Article  Google Scholar 

  • Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26(5):679–689

    Article  Google Scholar 

  • Schultz C (2011) Precipitation: state of the science. Eos Trans Am Geophys Union 92(43):378–378

    Article  Google Scholar 

  • Searcy JK, Hardison CH (1960) Double-mass curves. WaterSupply Paper 1541B:66 http://udspace.udel.edu/handle/19716/1592

    Google Scholar 

  • Sinclair S, Pegram G (2005) Combining radar and rain gauge precipitation estimates using conditional merging. Atmos Sci Lett 6(1):19–22

    Article  Google Scholar 

  • Sorooshian S, Hsu KL, Gao X et al (2000) Evaluation of PERSIANN system satellite-based estimates of tropical precipitation. Bull Am Meteorol Soc 81:2035–2046. https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2

    Article  Google Scholar 

  • Subyani AM (2004) Geostatistical Study of Annual and Seasonal Mean Rainfall Patterns in Southwest Saudi Arabia. Hydrol Sci Journal-Journal. https://doi.org/10.1623/hysj.49.5.803.55137

  • Subyani AM, Al-Modayan AA, Al-Ahmadi FS (2010) Topographic, seasonal and aridity influences on rainfall variability in western Saudi Arabia. J Environ Hydrol

  • Sultana R, Nasrollahi N (2018) Evaluation of remote sensing precipitation estimates over Saudi Arabia. J Arid Environ. https://doi.org/10.1016/j.jaridenv.2017.11.002

    Article  Google Scholar 

  • Takahashi K i, Arakawa H (1981) Climates of southern and western Asia. Elsevier Scientific Pub. Co., Amsterdam

    Google Scholar 

  • Tao T, Chocat B, Suiqing L, Kunlun X (2009) Uncertainty analysis of interpolation methods in precipitation spatial distribution–a case of small catchment in Lyon. Journal of Water Resource and Protection 1(02):136

    Article  Google Scholar 

  • Tekeli AE, Fouli H (2017) Reducing false flood warnings of TRMM rain rates thresholds over Riyadh City, Saudi Arabia by utilizing AMSR-E soil moisture information. Water Resour Manag. https://doi.org/10.1007/s11269-017-1573-1

    Article  Google Scholar 

  • Tesfagiorgis K, Mahani S, Krakauer N, Khanbilvardi R (2011) Bias correction of satellite precipitation estimates using a radar-gauge product-a case study in Oklahoma (USA). Hydrol Earth Syst Sci 15(8):2631

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456:12–29

    Article  Google Scholar 

  • Thiemig V, Rojas R, Zambrano-Bigiarini M, De Roo A (2013) Hydrological evaluation of satellite-based precipitation estimates over the Volta and Baro-Akobo Basin. J Hydrol 499:324–338

    Article  Google Scholar 

  • Willems P, Olsson J, Arnbjerg-Nielsen K, Beecham S, Pathirana A, Gregersen IB, Madsen H (2012) Impacts of climate change on precipitation extremes and urban drainage systems. IWA Publishing, London

    Google Scholar 

  • Yang Z, Hsu K, Sorooshian S et al (2016) Bias adjustment of satellite-based precipitation estimation using gauge observations: a case study in Chile. J Geophys Res 121:3790–3806. https://doi.org/10.1002/2015JD024540

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank MWEA and the General Authority of Meteorology and Environmental Protection (GAMEP) for providing the rain gauges data.

Funding

Partial financial support was made available from King Saudi University (KSU), Saudi Arabia Culture Mission (SACM), Ministry of Environment, Water and Agriculture (MEWA) of Saudi Arabia, the National Science Foundation Cyber-Enabled Sustainability Science and Engineering program (CCF-1331915), and the NASA Minority University Research and Education Project (MIRO NNX15AQ06A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raied Alharbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, R., Hsu, K. & Sorooshian, S. Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia. Arab J Geosci 11, 508 (2018). https://doi.org/10.1007/s12517-018-3860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3860-4

Keywords

Navigation