Skip to main content

Advertisement

Log in

Soil compaction under different management practices in a Croatian vineyard

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The use of machinery in vineyards is increasing soil compaction and erosion. However, there is a lack of information about the impacts of different management practices on soil conditions of vineyards. Therefore, the aim of this study was to assess soil compaction in Croatian vineyards under four different management systems: no-tillage (NT) system, conventional tillage (CT), yearly inversed grass covered (INV-GC) and tillage managed (INV-T) treatments. Four key top-soil (0–20 cm) parameters were assessed in the different land uses: bulk density (BD), penetration resistance (PR), soil water content (SWC) and carbon dioxide (CO2) fluxes. Tractor traffic increased the BD and PR in all treatments, with exception of CT treatment, as consequence of tillage. SWC showed higher values in INV-GC treatment during the dry period; meanwhile, it was similar during the wet season in every management type. Lower CO2 fluxes were found in INV-GC and NT than in the CT and INV-T treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allaire SE, Lange SF, Lafond JA, Pelletier B, Cambouris AN, Dutilleul P (2012) Multiscale spatial variability of CO2 emissions and correlations with physico-chemical soil properties. Geoderma 170:251–260. doi:10.1016/j.geoderma.2011.11.019

    Article  Google Scholar 

  • Alvarez R, Steinbach HS (2009) A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res 104:1–15. doi:10.1016/j.still.2009.02.005

    Article  Google Scholar 

  • Ampoorter E, Schrijver AD, van Nevel L, Hermy M, Verheyen K (2012) Impact of mechanized harvesting on compaction of sandy and clayed soils: results of a meta-analysis. Ann For Sci 69:533–542. doi:10.1007/s13595-012-0199-y

    Article  Google Scholar 

  • Arnaez J, Lasanta T, Ruiz-Flaño P, Ortigosa L (2007) Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil Tillage Res 93:324–334. doi:10.1016/j.still.2006.05.013

    Article  Google Scholar 

  • Barik K, Aksakal EL, Islam KR, Sari S, Angin I (2014) Spatial variability in soil compaction properties associated with field traffic operations. Catena 120:122–133. doi:10.1016/j.catena.2014.04.013

    Article  Google Scholar 

  • Bauer PJ, Frederick JR, Novak JM, Hunt PG (2006) Soil CO2 flux from a Norfolk loamy sand after 25 years of conventional and conservation tillage. Soil Tillage Res 90:205–211. doi:10.1016/j.still.2005.09.003

    Article  Google Scholar 

  • Becerra AT, Botta GF, Bravo XL, Tourn M, Melcon FB, Vazquez J, Nardon G (2010) Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España. Soil Tillage Res 107:49–56. doi:10.1016/j.still.2010.02.001

    Article  Google Scholar 

  • Biddoccu M, Ferraris S, Opsi F, Cavallo E (2016) Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North–West Italy). Soil Tillage Res 155:176–189. doi:10.1016/j.still.2015.07.005

    Article  Google Scholar 

  • Birkás M, Antos G, Neményi M, Szemők A (2008) Environmentally-sound adaptable tillage. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Botta GF, Jorajuria D, Balbuena R, Ressia M, Ferrero C, Rosatto H, Tourn M (2006) Deep tillage and traffic effects on subsoil compaction and sunflower (Helianthus annus L.) yields. Soil Tillage Res 91:164–172. doi:10.1016/j.still.2005.12.011

    Article  Google Scholar 

  • Botta GF, Tolon-Becerra A, Lastra-Bravo X, Tourn M (2010) Tillage and traffic effects (planters and tractors) on soil compaction and soybean (Glycine max L.) yields in Argentinean pampas. Soil Tillage Res 110:167–174. doi:10.1016/j.still.2010.07.001

    Article  Google Scholar 

  • Botta GF, Tolón-Becerra A, Rivero D, Laureda D, Ramírez-Roman M, Lastra-Bravo X, Agnes D, Flores-Parrac IM, Pelizzari F, Martiren V (2016) Compactión produced by combine harvest traffic: effect on soil and soybean (Glycine max L.) yields under direct sowing in Argentinean Pampas. Eur J Agron 74:155–163. doi:10.1016/j.eja.2015.12.011

    Article  Google Scholar 

  • Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost K (2015) The interdisciplinary nature of SOIL. Soil 1:117–129. doi:10.5194/soil-1-117-2015

    Article  Google Scholar 

  • Buragienė S, Šarauskis E, Romaneckas K, Sasnauskienė J, Masilionytė L, Kriaučiūnienė Z (2015) Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania. Sci Total Environ 514:1–9. doi:10.1016/j.scitotenv.2015.01.090

    Article  Google Scholar 

  • Carbonell-Bojollo R, González-Sánchez EJ, Veróz-González O, Ordóñez-Fernández R (2011) Soil management systems and short term CO2 emissions in a clayey soil in southern Spain. Sci Total Environ 409:2929–2935. doi:10.1016/j.scitotenv.2011.04.003

    Article  Google Scholar 

  • Cheng-Fang L, Dan-Na Z, Zhi-Kui K, Zhi-Sheng Z, Jin-Ping W, Ming-Li C, Cou-Gui C (2012) Effects of tillage and nitrogen fertilizers on CH4 and CO2 emissions and soil organic carbon in paddy fields of central China. PLoS One 7:e34642. doi:10.1371/journal.pone.0034642

    Article  Google Scholar 

  • Dawson JJ, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190. doi:10.1016/j.scitotenv.2007.03.023

    Article  Google Scholar 

  • De Moraes MT, Debiasi H, Carlesso R, Franchini JC, da Silva VR, da Luz FB (2016) Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil Tillage Res 155:351–362. doi:10.1016/j.still.2015.07.015

    Article  Google Scholar 

  • Defossez P, Richard G, Boizard H, O'Sullivan MF (2003) Modelling change in soil compaction due to agricultural traffic as function of water content. Geoderma 116:89–105. doi:10.1016/S0016-7061(03)00096-X

    Article  Google Scholar 

  • Dorner J, Sandoval P, Dec D (2010) The role of soil structure on the pore functionality of an ultisol. J Soil Sci Plant Nutr 10:495–508. doi:10.4067/S0718-95162010000200009

    Article  Google Scholar 

  • Duttmann R, Schwanebeck M, Nolde M, Horn R (2014) Predicting soil compaction risks related to field traffic during silage maize harvest. Soil Sci Soc Am J 78:408–421. doi:10.2136/sssaj2013.05.0198

    Article  Google Scholar 

  • Fabrizzi KP, Garcı́a FO, Costa JL, Picone LI (2005) Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil Tillage Res 81(1):57-69

  • Ferrero A, Usowicz B, Lipiec J (2005) Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard. Soil Tillage Res 84:127–138. doi:10.1016/j.still.2004.10.003

    Article  Google Scholar 

  • Galati A, Gristina L, Crescimanno M, Barone E, Novara A (2015) Towards more efficient incentives for agri-environment measures in degraded and eroded vineyards. Land Degrad Dev 26:557–564. doi:10.1002/ldr.2389

    Article  Google Scholar 

  • García-Díaz A, Allas RB, Gristina L, Cerdà A, Pereira P, Novara A (2016) Carbon input threshold for soil carbon budget optimization in eroding vineyards. Geoderma 271:144–149. doi:10.1016/j.geoderma.2016.02.020

    Article  Google Scholar 

  • García-Díaz A, Bienes R, Sastre B, Novara A, Gristina L, Cerdà A (2017) Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric Ecosyst Environ 236:256–267. doi:10.1016/j.agee.2016.12.013

    Article  Google Scholar 

  • García-Ruiz JM, Lana-Renault N (2011) Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region—a review. Agric Ecosyst Environ 140:317–338. doi:10.1016/j.agee.2011.01.003

    Article  Google Scholar 

  • Grossman RB, Reinsch TG (2002) Methods of soil analysis, part 4. Physical methods: bulk density and linear extensibility. Soil Science Society of America Inc, Madison, pp 201–228

    Google Scholar 

  • Håkansson I, Lipiec J (2000) A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil Tillage Res 53:71–85. doi:10.1016/S0167-1987(99)00095-1

    Article  Google Scholar 

  • Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res 82:121–145. doi:10.1016/j.still.2004.08.009

    Article  Google Scholar 

  • Horn R, Domżżał H, Słowińska-Jurkiewicz A, Van Ouwerkerk C (1995) Soil compaction processes and their effects on the structure of arable soils and the environment. Soil Tillage Res 35:23–36. doi:10.1016/0167-1987(95)00479-C

    Article  Google Scholar 

  • IUSS, Working Group World reference base for soil resources (2014) World soil resources reports. FAO, Rome

  • Keller T, Arvidsson J (2006) Prevention of traffic-induced subsoil compaction in Sweden: experiences from wheeling experiments. Arch Agron Soil Sci 52:207–222. doi:10.1080/03650340600631540

    Article  Google Scholar 

  • Mahmood R, Littell A, Hubbard KG, You J (2012) Observed data-based assessment among soil moisture at various depths, precipitation, and temperature. Appl Geogr 34:255–264. doi:10.1016/j.apgeog.2011.11.009

    Article  Google Scholar 

  • Marquina S, Pérez T, Donoso L, Giuliante A, Rasse R, Herrera F (2015) NO, N2O and CO2 soil emissions from Venezuelan corn fields under tillage and no-tillage agriculture. Nutr Cycl Agroecosyst 101:123–137. doi:10.1007/s10705-014-9659-0

    Article  Google Scholar 

  • Matthews GP, Laudone GM, Gregory AS, Bird NRA, Matthews AG, Whalley WR (2010) Measurement and simulation of the effect of compaction on the pore structure and saturated hydraulic conductivity of grassland and arable soil. Water Resour Res 46:W05501. doi:10.1029/2009WR007720

    Article  Google Scholar 

  • Moitinho MR, Padovan MP, Panosso AR, Teixeira DDB, Ferraudo AS, La Scala N (2015) On the spatial and temporal dependence of CO2 emission on soil properties in sugarcane (Saccharum spp.) production. Soil Tillage Res 148:127–132. doi:10.1016/j.still.2014.12.012

    Article  Google Scholar 

  • Nawaz MF, Bourrie G, Trolard F (2013) Soil compaction impact and modelling. A review. Agron Sustain Dev 33:291–309. doi:10.1007/s13593-011-0071-8

    Article  Google Scholar 

  • Novara A, Gristina L, Guaitoli F, Santoro A, Cerdà A (2013) Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 4:255–262. doi:10.5194/se-4-255-2013

    Article  Google Scholar 

  • Oorts K, Merckx R, Gréhan E, Labreuche J, Nicolardot B (2007) Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Tillage Res 95:133–148. doi:10.1016/j.still.2006.12.002

    Article  Google Scholar 

  • Prosdocimi M, Cerdà A, Tarolli P (2016) Soil water erosion on Mediterranean vineyards: a review. Catena 141:1–21. doi:10.1016/j.catena.2016.02.010

    Article  Google Scholar 

  • Rubinić V, Durn G, Husnjak S, Tadej N (2014) Composition, properties and formation of Pseudogley on loess along a precipitation gradient in the Pannonian region of Croatia. Catena 113:138–149. doi:10.1016/j.catena.2013.10.003

    Article  Google Scholar 

  • Ruiz-Colmenero M, Bienes R, Marques MJ (2011) Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Tillage Res 117:211–223. doi:10.1016/j.still.2011.10.004

    Article  Google Scholar 

  • Saha D, Kukal SS (2015) Soil structural stability and water retention characteristics under different land uses of degraded lower Himalayas of North-West India. Land Degrad Dev 26:263–271. doi:10.1002/ldr.2204

    Article  Google Scholar 

  • Schwartz RC, Baumhardt RL, Evett SR (2010) Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil Tillage Res 110:221–229. doi:10.1016/j.still.2010.07.015

    Article  Google Scholar 

  • Šimanský V, Balashov E, Horák J (2016) Water stability of soil aggregates and their ability to sequester carbon in soils of vineyards in Slovakia. Arch Agron Soil Sci 62:177–197. doi:10.1080/03650340.2015.1048683

    Article  Google Scholar 

  • Six JΑΕΤ, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103. doi:10.1016/S0038-0717(00)00179-6

    Article  Google Scholar 

  • Smart DR, Penuelas J (2005) Short-term CO2 emissions from planted soil subject to elevated CO2 and simulated precipitation. Appl Soil Ecol 28:247–257. doi:10.1016/j.apsoil.2004.07.011

    Article  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791. doi:10.1046/j.1351-0754.2003.0567.x

    Article  Google Scholar 

  • Tolon-Becerra A, Tourn M, Botta GF, Lastra-Bravo X (2011) Effects of different tillage regimes on soil compaction, maize (Zea mays L.) seedling emergence and yields in the eastern Argentinean Pampas region. Soil Tillage Res 117:184–190. doi:10.1016/j.still.2011.10.003

    Article  Google Scholar 

  • Tracy SR, Black CR, Roberts JA, Mooney SJ (2013) Exploring the interacting effect of soil texture and bulk density on root system development in tomato (Solanum lycopersicum L.) Environ Exp Bot 91:38–47. doi:10.1016/j.envexpbot.2013.03.003

    Article  Google Scholar 

  • Van Dijck SJE, van Asch TW (2002) Compaction of loamy soils due to tractor traffic in vineyards and orchards and its effect on infiltration in southern France. Soil Tillage Res 63:141–153. doi:10.1016/S0167-1987(01)00237-9

    Article  Google Scholar 

  • Widen B, Lindroth A (2003) A calibration system for soil carbon dioxide – efflux measurement chambers: description and application. Soil Sci Soc Am J 67:327–334. doi:10.2136/sssaj2003.3270

    Article  Google Scholar 

  • Yavuzcan HG, Matthies D, Auernhammer H (2005) Vulnerability of Bavarian silty loam soil to compaction under heavy wheel traffic: impacts of tillage method and soil water content. Soil Tillage Res 84:200–215. doi:10.1016/j.still.2004.11.003

    Article  Google Scholar 

  • Zhang S, Grip H, Lövdahl L (2006) Effect of soil compaction on hydraulic properties of two loess soils in China. Soil Tillage Res 90:117–125. doi:10.1016/j.still.2005.08.012

    Article  Google Scholar 

  • Ziadat FM, Taimeh AY (2013) Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad Dev 24:582–590. doi:10.1002/ldr.2239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darija Bilandzija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogunovic, I., Bilandzija, D., Andabaka, Z. et al. Soil compaction under different management practices in a Croatian vineyard. Arab J Geosci 10, 340 (2017). https://doi.org/10.1007/s12517-017-3105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3105-y

Keywords

Navigation