Skip to main content
Log in

Variation of hydraulic conductivity with depth in the North China plain

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The unique relationship between hydraulic conductivity (K) and depth (D) is hardly observed because K is affected by many geologic factors. To characterize the variation of K with D in unconsolidated sediments, 820 samples were collected from eight boreholes along the Hutuo River in the direction of flow in the North China Plain (NCP). The K values of these samples were determined using the geophysical logging and grain size data, after which the K series with D for eight boreholes were divided into three components: seasonal, trend, and random components, using the random forest (RF) and time series (TS) methods. The results indicate that the stratum pressure has significant effects on the variation of K with D in the upper layers for H2, H5, H6, and H7 and in the deep layer for H1, H3, and H4. It is here concluded that K can decrease with D when the effects of sedimentary environment and random errors are eliminated. The decreasing trend component of K includes three different decay models, and its difference value shows a decreasing trend from the piedmont region and central plain to the coastal area. The conclusions drawn in this paper are crucial to understanding the dependence of K on D in unconsolidated sediments, which can provide key information for quantifying deep groundwater flow and transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bakshevskaya VA, Pozdnyakov SP (2013) Methods of modeling hydraulic heterogeneity of sedimentary formations. Water Resour 40:767–775. doi:10.1134/S0097807813070026

    Article  Google Scholar 

  • Barahona-Palomo M, Riva M, Sanchez-Vila X, Vazquez-Sune E, Guadagnini A (2011) Quantitative comparison of impeller-flowmeter and particle-size-distribution techniques for the characterization of hydraulic conductivity variability. Hydrogeol J 19:603–612. doi:10.1007/s10040-011-0706-5

    Article  Google Scholar 

  • Blaschke AP, Steiner KH, Schmalfuss R, Gutknecht D, Sengschmitt D (2003) Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. Int Rev Hydrobiol 88(3–4):397–413. doi:10.1002/iroh.200390034

    Article  Google Scholar 

  • Boucekine M, Loundou A, Baumstarck K, Minaya-Flores P, Pelletier J, Ghattas B (2013) Using the random forest method to detect a response shift in the quality of life of multiple sclerosis patients: a cohort study. BMC Med Res Methodol 13:20–28. doi:10.1186/1471-2288-13-20

    Article  Google Scholar 

  • Cheng C, Chen X (2007) Evaluation of methods for determination of hydraulic properties in an aquifer-aquitard system hydrologically connected to a river. Hydrogeol J 15:669–678. doi:10.1007/s10040-006-0135-z

    Article  Google Scholar 

  • Cheng C, Song J, Chen X, Wang D (2011) Statistical distribution of streambed vertical hydraulic conductivity along the Platte River, Nebraska. Water Resour Manag 25:265–285. doi:10.1007/s11269-010-9698-5

    Article  Google Scholar 

  • Dong W, Chen X, Wang Z, Ou G, Liu C (2012) Comparison of vertical hydraulic conductivity in a streambed-point bar system of a gaining stream. J Hydrol 450:9–16. doi:10.1016/j.jhydrol.2012.05.037

  • Doro KO, Leven C, Cirpka OA (2013) Delineating subsurface heterogeneity at a loop of river Steinlach using geophysical and hydrogeological methods. Environ Earth Sci 69:335–348. doi:10.1007/s12665-013-2316-0

    Article  Google Scholar 

  • Jiang R, Tang W, Wu X, Fu W (2009a) A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinf 10:S65–S78. doi:10.1186/1471-2105-10-S1-S65

    Article  Google Scholar 

  • Jiang XW, Wan L, Wang XS, Ge S, Liu J (2009b) Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophys Res Lett 36(24):L24402. doi:10.1029/2009GL041251.

    Article  Google Scholar 

  • Jiang XW, Wang XS, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. Hydrogeol J 18:839–850. doi:10.1007/s10040-010-0575-3

    Article  Google Scholar 

  • Jung Y, Mahinthakumar G, Ranjithan R (2013) Development of a simultaneous search-based pilot point method for subsurface characterization. Stoch Environ Res Risk Assess 27:2003–2013. doi:10.1007/s00477-013-0734-x

    Article  Google Scholar 

  • Louis C (1974) Rock hydraulics, in rock mechanics. Springer, New York, pp. 299–387

    Google Scholar 

  • Liu X, Feng X, Liu J, Lin L (2014) Laboratory application of laser grain-size analyzer in determining suspended sediment concentration. J Ocean Univ China 13(3):375–380. doi:10.1007/s11802-014-1973-2

    Article  Google Scholar 

  • Lu H (2007) A method to estimate hydraulic conductivity from bulk geochemical compositions. Environ Geology 51:1029–1041. doi:10.1007/s00254-006-0372-4

    Article  Google Scholar 

  • Malyutina E, Shiryaev V (2014) Time series forecasting using nonlinear dynamic methods and identification of deterministic chaos. Procedia Comput Sci 31:1022–1031. doi:10.1016/j.procs.2014.05.355

    Article  Google Scholar 

  • Meyerhoff S, Maxwell R (2011) Quantifying the effects of subsurface heterogeneity on hillslope runoff using a stochastic approach. Hydrogeol J 19:1515–1530. doi:10.1007/s10040-011-0753-y

    Article  Google Scholar 

  • Min L, Yu J, Liu C, Zhu J, Wang P (2013) The spatial variability of streambed vertical hydraulic conductivity in an intermittent river, northwestern China. Environ Earth Sci 69:873–883. doi:10.1007/s12665-012-1973-8

    Article  Google Scholar 

  • Pahlavan R, Toomanian N, Khormali F, Brungard C, Komaki C (2014) Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma 232-234:97–106. doi:10.1016/j.geoderma.2014.04.036

    Article  Google Scholar 

  • Pliakas F, Petalas C (2011) Determination of hydraulic conductivity of unconsolidated river alluvium from permeameter tests, empirical formulas and statistical parameters effect analysis. Water Resour Manag 25(11):2877–2899. doi:10.1007/s11269-011-9844-8

    Article  Google Scholar 

  • Rienzner M, Gandolfi C (2014) Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale. Soil Tillage Res 135:28–40. doi:10.1016/j.still.2013.08.012

    Article  Google Scholar 

  • Rogiers B, Mallants D, Batelaan O, Gedeon M, Huysmans M, Dassargues A (2012) Estimation of hydraulic conductivity and its uncertainty from grain-size data using glue and artificial neural networks. Math Geosci 44:739–763. doi:10.1007/s11004-012-9409-2

    Article  Google Scholar 

  • Rogiers B, Winters P, Huysmans M, Beerten K, Mallants D, Gedeon M (2014) High-resolution saturated hydraulic conductivity logging of borehole cores using air permeability measurements. Hydrogeol J 22:1345–1358. doi:10.1007/s10040-014-1144-y

    Article  Google Scholar 

  • Rosas J, Lopez O, Missimer TM, Coulibaly K, Dehwah AH, Sesler K (2014) Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Groundwater 52:399–413. doi:10.1111/gwat.12078

    Article  Google Scholar 

  • Ross HC, Mcelwee CD (2007) Multi-level slug tests to measure 3-D hydraulic conductivity distributions. Nat Resour Res 16:67–79. doi:10.1007/s11053-007-9034-9

    Article  Google Scholar 

  • Saar MO (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. J Geophys Res: Solid Earth (1978–2012) 109 (B4). doi: 10.1029/2003JB002855

  • Sakata Y, Ikeda R (2013) Depth dependence and exponential models of permeability in alluvial-fan gravel deposits. Hydrogeol J 21:773–786. doi:10.1007/s10040-013-0961-8

    Article  Google Scholar 

  • Shao X, Yao F, Zhang J, Li X (2013) Analysis of drought in north Chian based on evapotranspiration drought index. Meteorological Monthly 39(9):1154–1162. doi:10.7519/j.issn.1000-0526.2013.09.010

    Google Scholar 

  • Shruthi RBV, Kerle N, Jetten V, Stein A (2014) Object-based gully system prediction from medium resolution imagery using random forests. Geomorphology 216:283–294. doi:10.1016/j.geomorph.2014.04.006

    Article  Google Scholar 

  • Song J, Chen X, Cheng C, Summerside S, Wen F (2007) Effects of hyporheic processes on streambed vertical hydraulic conductivity in three rivers of Nebraska. Geophys Res Lett 34(7):L07409. doi:10.1029/2007GL029254

    Article  Google Scholar 

  • Song J, Chen X, Cheng C, Wang D, Wang W (2010) Variability of streambed vertical hydraulic conductivity with depth along the Elkhorn River, Nebraska, USA. Chin Sci Bull 55:992–999. doi:10.1007/s11434-009-0640-2

    Article  Google Scholar 

  • Soupios PM, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis Basin in Chania (Crete–Greece). J Hydrol 338(1):122–131. doi:10.1016/j.jhydrol.2007.02.028

  • Tijani MN, Nton ME (2009) Hydraulic, textural and geochemical characteristics of the Ajali formation, Anambra Basin, Nigeria: implication for groundwater quality. Environ Geol 56:935–951. doi:10.1007/s00254-008-1196-1

    Article  Google Scholar 

  • Urish DW (1981) Electrical resistivity–hydraulic conductivity relationships in glacial outwash aquifers. Water Resour Res 17(5):1401–1408. doi:10.1029/WR017i005p01401

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114:106–115. doi:10.1016/j.rse.2009.08.014

    Article  Google Scholar 

  • Veronesi F, Hurni L (2014) Random Forest with semantic tie points for classifying landforms and creating rigorous shaded relief representations. Geomorphology 224:152–160. doi:10.1016/j.geomorph.2014.07.020

    Article  Google Scholar 

  • Vienken T, Dietrich P (2011) Field evaluation of methods for determining hydraulic conductivity from grain size data. J Hydrol 400:58–71. doi:10.1016/j.jhydrol.2011.01.022

    Article  Google Scholar 

  • Wojnar AJ, Mutiti S, Levy J (2013) Assessment of geophysical surveys as a tool to estimate riverbed hydraulic conductivity. J Hydrol 482:40–56. doi:10.1016/j.jhydrol.2012.12.018

    Article  Google Scholar 

  • Wu M, Wu J, Liu J, Wu J, Zheng C (2015) Effect of groundwater quality on sustainability of groundwater resource: a case study in the North China plain. J Contam Hydrol 179:132–147. doi:10.1016/j.jconhyd.2015.06.001

    Article  Google Scholar 

  • Xing L, Guo H, Wei L, Zhang Y, Hou C, Li R, Wang Y (2012) Evolution feature and genesis of fluoride groundwater in shallow aquifer from North China plain. J Earth Sci Environ 34:57–67. doi:10.3969/j.issn.1672-6561.2012.04.008

    Google Scholar 

  • Zhao P, Shao M, Wang T (2010) Spatial distributions of soil surface-layer saturated hydraulic conductivity and controlling factors on dam farmlands. Water Resour Manag 24:2247–2266. doi:10.1007/s11269-009-9550-y

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Geological Survey Projects Foundation of Institute of Hydrogeology and Environmental Geology (G201503, G201605, and SK201504), China Postdoctoral Science Foundation (2015 M571658), and National Natural Science Foundation of China (41502248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Shi, J., Zhang, Y. et al. Variation of hydraulic conductivity with depth in the North China plain. Arab J Geosci 9, 571 (2016). https://doi.org/10.1007/s12517-016-2597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2597-1

Keywords

Navigation