Skip to main content
Log in

Ba and Sr mineralization of fossil fish bones from metamorphosed Belqa group sediments, Central Jordan: an integrated methodology

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Potentially new Ba–Sr phase with (Ca, Ba, Sr)10-xx[(SO4)3(PO4)3](F, O2−, Cl)2 (1 < x < 2) composition belonging to the apatite supergroup was discovered in a recrystallized low-grade combustion metamorphic rocks of the Belqa Group, Central Jordan. The phase occurs as a fibrous subparallel aggregate and was originated by pseudomorphical replacement of precursor fish bone tissues embedded in biomicritic bituminous calcareous sediments. The mineralized fish bone was primarily composed of biogenic carbonate-fluorapatite. The Ba–Sr phase is monoclinic with space group P21/b, the unit cell parameters a = 18.881(19), b = 7.091(12), c = 8.951(12) Å, β = 119.68(8)o, V = 1041.1(14) Å3, and Z = 4. The empirical formula of the Ba–Sr phase is (Ca5.19Ba2.35Sr1.07Na0.06)Σ8.67[(S3.31P2.63Al0.03Si0.02V0.01)Σ6.00O24](F 1.33O2− 0.58Cl 0.01)Σ2.00. The primary textural heterogeneity of the bone tissues has controlled sharp compositional zonation of the Ba–Sr phase expressed in patchy distribution of Sr, Ba, Ca, P, and S. The newly-formed Ba–Sr phase represents the extreme case of interaction between precursor fossil biogenic carbonate-fluorapatite and associated Ba and Sr depot minerals (barite and celestine). The reaction took place during long-term and low-grade (T = 450–500 °C) combustion metamorphism of the calcareous sediments under dry conditions. The fossil bones were affected by drastic physical and chemical changes that were completed by the formation of a new mineral phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abed AM, Arouri KR, Boreham CJ (2005) Source rock potential of the phosphorite-bituminous chalk-marl sequence in Jordan. Mar Petrol Geol 22:413–425

    Article  Google Scholar 

  • Almogi-Labin A, Bein A, Sass E (1993) Late Cretaceous upwelling system along the southern Tethys margin (Israel): interrelationship between productivity, bottom water environments, and organic matter preservation. Paleoceanography 8:671–690

    Article  Google Scholar 

  • Ancharov AI, Manakov AY, Mezentsev NA, Tolochko BP, Sheromov MA, Tsukanov VM (2001) New station at the 4th beamline of the VEPP-3 storage ring. Nucl Instrum Meth A 470:80–83

    Article  Google Scholar 

  • Anovitz LM, Essen EJ (1986) Phase equilibria in the system CaCO3-MgCO3-FeCO3. J Petrol 28(2):389–414

    Article  Google Scholar 

  • Arkhipenko D, Moroz T (1997) Vibration spectrum of natural ellestadite. Crystallogr Rep 42:651–656

    Google Scholar 

  • Ayliffe LK, Chivas AR, Leakey MG (1994) The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate. Geochim Cosmochim Acta 58(23):5291–5298

    Article  Google Scholar 

  • Burke EAJ (2008) Tidying up mineral names: an IMA-CNMNC scheme for suffixes, hyphens and diacritical marks. Mineral Rec 39:131–135

    Google Scholar 

  • Chakhmouradian AR, Reguir EP, Mitchell RH (2002) Strontium-apatite: new occurrence, and the extent of Sr-for-Ca substitution in apatite-group minerals. Can Mineral 40:121–136

    Article  Google Scholar 

  • Ciobanu CS, Iconaru SL, Le Coustumer P, Predoi D (2013) Vibrational investigations of silver-doped hydroxyapatite with antibacterial properties. Journal of Spectroscopy 2013(1):1–5. doi:10.1155/2013/471061

    Article  Google Scholar 

  • Cid AS, Anjos RM, Zamboni CB, Cardoso R, Muniz M, Corona A, Valladares DL, Kovacs L, Macario K, Perea D, Goso C, Velasco H (2014) Na, K, Ca, Mg, and U-series in fossil bone and the proposal of a radial diffusion–adsorption model of uranium uptake. J Environ Radioactiv 136:131–139

    Article  Google Scholar 

  • Comodi P, Liu Y, Stoppa F, Wooley AR (1999) A multi-method analysis of Si-, S- and REE-rich apatite from a new find of kalsilite-bearing leucitite (Abruzzi, Italy). Mineral Mag 63(5):661–672

    Article  Google Scholar 

  • Dunn PJ, Rouse RC (1978) Morelandite, a new barium arsenate chloride member of the apatite group. Canadian Mineralogist 16:601–604

    Google Scholar 

  • Elie M, Techer I, Trotignon L, Khoury H, Salameh E, Vandamme D, Boulvais P, Fourcade S (2007) Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part II: organic matter evolution, magnetic susceptibility and metals (Ti, Cr, Fe) at the Khushaym Matruck natural analog (Central Jordan). Applied Geochemistry 22:1311–1328

    Article  Google Scholar 

  • Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  • Fleet ME, Liu X, Pan Y (2000) Rare-earth elements in chlorapatite [Ca10(PO4)6(Cl)2]: uptake, site preference, and degradation of monoclinic structure. Am Mineral 85:1437–1446

    Article  Google Scholar 

  • Fleurance S, Cuney M, Malartre M, Reyx J (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, Central Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 369:201–219

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Pressure Res 14:235–248

    Article  Google Scholar 

  • Henderson P, Marlow CA, Molleson TI, Williams CT (1983) Patterns of chemical change during bone fossilization. Nature 306:358–360

    Article  Google Scholar 

  • Hughes JM, Cameron M, Crowley KD (1990) Crystal structures of natural ternary apatites: Solid solution in the Ca5(PO4)3X (X = F,OH,Cl) system. Am Mineral 75:295–304.

  • Kampf AR, Housley RM (2011) Fluorphosphohedyphane Ca2Pb3(PO4)3F, the first apatite supergroup mineral with essential Pb and F. Am Mineral 96:423–429

    Article  Google Scholar 

  • Khoury H (2012) Long-term analog of carbonation in travertine from Uleimat Quarries. Central Jordan. Environmental Earth Sciences. 65:1909–1916

    Article  Google Scholar 

  • Khoury H (2015) Uranium minerals of Central Jordan. Applied earth science (trans. Inst. Min. Metall. B) 124(2):104–128.

  • Khoury H, Salameh E, Clark I (2014) Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from Central Jordan. Appl Geochem 43:49–65

    Article  Google Scholar 

  • Khoury H, Sokol E, Clark I (2015) Calcium uranium oxides from Central Jordan: mineral assemblages, chemistry, and alteration products. Can Mineral 53(1):61–82

    Article  Google Scholar 

  • Khoury H, Sokol E, Kokh S, Seryotkin Y, Kozmenko O, Goryainov S, Clark I (2016a) Intermediate members of the lime-monteponite solid solutions (Ca1–x Cd x O, x = 0.36–0.55): discovery in natural occurrence. Am Mineral 101:146–161

    Article  Google Scholar 

  • Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Nigmatulina EN, Goryainov SV, Belogub EV, Clark ID (2016b) Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, Central Jordan. Miner Petrol 110:125–140.

  • Kohn MJ (2008) Models of diffusion-limited uptake of trace elements in fossils and rates of fossilization. Geochim Cosmochim Acta 72:3758–3770

    Article  Google Scholar 

  • Kohn MJ, Cerling TE (2002) Stable isotope compositions of biological apatite. Rev Mineral Geochem 48:455–488

    Article  Google Scholar 

  • Kohn MJ, Law JM (2006) Stable isotope chemistry of fossil bone as a new paleoclimate indicator. Geochim Cosmochim Acta 70:931–946

    Article  Google Scholar 

  • Kokh SN, Sokol EV, Sharygin VV (2015) Ellestadite-group minerals in combustion metamorphic rocks. Chapter 20. In: Stracher GB, Prakash A, Sokol EV (eds) Coal and peat fires: a global perspective, vol v.3. Elsevier, Amsterdam, pp. 543–562

    Google Scholar 

  • Kreidler ER, Hummel FA (1970) The crystal chemistry of apatite: structure fields of fluor- and chlorapatite. Am Mineral 55:170–184

    Google Scholar 

  • Marks MAW, Wenzel T, Whitehouse MJ, Loose M, Zack T, Barth M, Worgard L, Krasz V, Eby GN, Stosnach H, Markl G (2012) The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: an integrated analytical approach. Chem Geol 291:241–255

    Article  Google Scholar 

  • McClellan GH, Van Kauwenbergh SJ (1990) Mineralogy of sedimentary apatites. In: Notholt AJG, Jarvis I (eds) phosphorite Research and Development. Geol Soc Spec Publ 52:23–31

    Article  Google Scholar 

  • McConnell D (1973) Apatite. Its Crystal Chemistry, Mineralogy, Utilization, and Geologic and Biologic Occurrences. Springer, New York.

  • Model S506 Interactive Peak Fit (2002) Canberra Industries, Inc., Meriden

  • Nishio-Hamane D, Ogoshi Y, Minakawa T (2012) Miyahisaite, (Sr,Ca)2Ba3(PO4)3F, a new mineral of the hedyphane group from the Shimoharai mine, Oita prefecture, Japan. J Miner Petrol Sci 107:121–126.

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) phosphates – geochemical, geobiological, and materials importance. Rev Mineral Geochem 48:13–49

    Article  Google Scholar 

  • Pasero M, Kampf AR, Ferraris C, Pekov IV, Racovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22:163–169

    Article  Google Scholar 

  • Parat F, Dungan MA, Streck MJ (2002) Anhydrite, pyrrhotite, and sulfur-rich apatite: tracing the sulfur evolution of an Oligocene andesite (Eagle Mountain, CO, USA). Lithos 64:63–75

    Article  Google Scholar 

  • Pike AWG, Hedges REM, Van Calsteren P (2002) U-series dating of bone using the diffusion-adsorption model. Geochim Cosmochim Acta 66:4273–4286

    Article  Google Scholar 

  • Powell JH (1989) Stratigraphy and sedimentology of the Phanerozoic rocks in central and southern Jordan, Part B: Kurnub, Ajlun and Belqa groups. Bulletin 11, Geology Directorate, Natural Resources Authority (Ministry of Energy and Mineral resources), Amman, Jordan.

  • Powell JH, Moh’d BK (2011) Evolution of cretaceous to Eocene alluvial and carbonate platform sequences in central and South Jordan. GeoArabia 16:29–82

    Google Scholar 

  • Rastsvetaeva RK, Khomyakov AP (1996) Crystal structure of deloneite-(Ce), a highly ordered Ca-analogue of belovite. Dokl Chem 349:182–185

    Google Scholar 

  • Reynard B, Balter V (2014) Trace elements and their isotopes in bones and teeth: diet, environments, diagenesis, and dating of archeological and paleontological samples. Palaeogeogr Palaeoclimatol Palaeoecol 416:4–16

    Article  Google Scholar 

  • Roy DM, Drafall LE, Roy R (1978) Crystal chemistry, crystal growth, and phase equilibria of apatites. In: Alper AM (ed) Phase diagrams, material sciences and technology 6-V. Academic Press, New York, pp. 186–239

    Google Scholar 

  • Seryotkin YV, Sokol EV, Kokh SN (2012) Natural pseudowollastonite: crystal structure, associated minerals, and geological context. Lithos 133-135:75–90

    Article  Google Scholar 

  • Sokol EV, Kokh SN, Ye V, Thiéry V, Korzhova SA (2014) Natural analogs of belite sulfoaluminate cement clinkers from Negev desert, Israel. Am Mineral 99:1471–1487

    Article  Google Scholar 

  • Trueman CN, Tuross N (2002) Trace elements in recent and fossil bone apatite. Rev Mineral Geochem 48:489–521

    Article  Google Scholar 

  • Zateeva SN, Sokol EV, Sharygin VV (2007) Specificity of pyrometamorphic minerals of the ellestadite group. Geol Ore Deposit 49:792–805

    Article  Google Scholar 

Download references

Acknowledgments

The manuscript benefited much from the thoughtful review and valuable comments by anonymous reviewers, as well as the helpful suggestions of Abdullah M. Al-Amri, Editor-in-Chief Arabian Journal of Geosciences and Dr. Domenico Doronzo, Associate Editor Arabian Journal of Geosciences. We wish to thank Dr. S. Goryainov, E. Nigmatulina and M. Khlestov (IGM, Novosibirsk) for assistance during the analytical work. The study was carried out within the limits of the Memorandum of Understanding on Academic Cooperation between the University of Jordan (Amman) and V.S. Sobolev Institute of Geology and Mineralogy SB RAS (Novosibirsk). The Russian contribution was supported by grant 15-05-00760 from the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani N. Khoury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoury, H.N., Kokh, S.N., Sokol, E.V. et al. Ba and Sr mineralization of fossil fish bones from metamorphosed Belqa group sediments, Central Jordan: an integrated methodology. Arab J Geosci 9, 461 (2016). https://doi.org/10.1007/s12517-016-2503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2503-x

Keywords

Navigation