Skip to main content
Log in

Evaluation of METRIC-derived ET fluxes over irrigated alfalfa crop in desert conditions using scintillometer measurements

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A field study on a 50-ha alfalfa (Medicago sativa L.) irrigated field was conducted to investigate the performance of the remote sensing (RS) based Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model in the estimation of evapotranspiration (ET) under the arid conditions of Saudi Arabia. The METRIC model performance was investigated by comparing the energy fluxes estimated by the model to the output of a surface layer scintillometer (SLS) system installed in the field, given the fact that the SLS is efficient in measuring sensible heat fluxes (H) over vegetative areas. Landsat-8 reflectance data were used as inputs for the METRIC model. Results of the study revealed that the HMETRIC data was strongly correlated with the HSLS data with an R 2 value of 0.74 (P > F = 0.0064) and a mean bias error (MBE) of 6.05 W m−2 (6 %). The METRIC model showed a good performance in estimating the hourly latent heat (LE) fluxes compared with SLS data with an R 2 value of 0.81 (P > F = 0.0023), an MBE of 24.46 W m−2 (8 %) and a Nash–Sutcliffe efficiency (NSE) of 0.91. Furthermore, the hourly ET was estimated with an MBE and an NSE of 0.036 mm h−1 (8 %) and 1.00, respectively. Compared to the SLS data, the METRIC model was found to generally provide an efficient and an accurate means of energy fluxes estimation; therefore, ET estimation over the studied irrigated alfalfa crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen GR, Tasumi M, Morse A, Kramber WJ, Bastiaanssen WGM (2005) Computing and mapping of evapotranspiration p 73–90 In: Aswathanarayana U (Eds) Advances in water science methodologies. AA Balkema Publishers Leiden The Netherlands. ISBN0–203–08684-8

  • Allen RG, Burnett B, Kramber W, Huntington J, Kjaersgaard J, Kilic A, Kelly C, Trezza R (2013) Automated calibration of the METRIC-Landsat evapotranspiration process. J Am Water Resour Assoc 49(3):563–576

    Article  Google Scholar 

  • Allen RG, Tasumi M, Morse A, Trezza R, Wright J, Bastiaanssen WGM, Kramber W, Lorite I, Robison C (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—applications. J Irrig Drain Eng 133(4):395–406

    Article  Google Scholar 

  • Andreas E (1992) Uncertainty in a path-averaged measurement of the friction velocity u*. J Appl Meteorol Climatol 31:1312–1321

    Article  Google Scholar 

  • Andreas E (2012) Two experiments on using a scintillometer to infer the surface fluxes of momentum and sensible heat. J Appl Meteorol Climatol 51:1685–1701 DOI:101175/JAMC-D-11-02481

  • ASCE-EWRI (2005) The ASCE standardized reference evapotranspiration equation. In: Allen RG, Walter IA, Elliot RL, Howell TA, Itenfisu D, Jensen ME, Snyder RL (Eds) ASCE standardization of Reference Evapotranspiration Task Committee Final Rep Reston Va: pp 70

  • Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) Remote sensing surface energy balance algorithm for land (SEBAL):1 formulation. J Hydrol 212-213(1–4):198–212

    Article  Google Scholar 

  • Beyrich F, Bange J, Hartogensis OK, Raasch S, Braam M, Dinther Dvan, Graf D, Kesteren Bvan, Kroonenberg AC van den, Maronga B, Martin S, Moene AF (2012) Towards a validation of scintillometer measurements:the LITFASS-2009 experiment. Boundary-Layer Meteorol 144:83–112

  • Brest CL, Goward SN (1987) Driving surface albedo measurements from narrow band satellite data. Int J Remote Sens 8:351–367

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:101029/2005JD006548

  • Brunsell NA, Gillies R (2002) Incorporating surface emissivity into a thermal atmospheric correction. Photogramm Eng Remote Sens 68(12):1263–1269

    Google Scholar 

  • Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resourc Res 11:742–744

    Article  Google Scholar 

  • Carrasco-Benavides M, Ortega-Farías S, Lagos LO, Kleissl J (2013) Assessment of the METRIC model in the estimation of instantaneous values of sensible and latent heat fluxes over a drip-irrigated Merlot vineyard using Landsat images. Anais XVI Simposio Brasileiro de Sensoriamento Remoto - SBSR Foz do Iguaçu PR Brasil 13 a 18 de abril de 2013 INPE (Accessed on August 27 2014 from:http://wwwdsrinpebr/sbsr2013/files/p0656pdf)

  • Chavez JL, Neale CMU, Hipps LE, Prueger JH, Kustas WP (2005) Comparing aircraft-based remotely sensed energy balance fluxes with eddy covariance tower data using heat flux source area functions. J Hydrometeorol 6:923–940

    Article  Google Scholar 

  • Danelichen VHD, Biudes MS, Souza MC, Machado NG, Da-Silva BB, Nogueira JD (2014) Estimation of soil heat flux in a neotropical wetland and region using remote sensing techniques. Revista Brasileira de Meteorologia 29(4):469–482

    Article  Google Scholar 

  • DeBruin HAR, Hurk BJJM van den, Kohsiek W (1995) The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol 76:25–40

  • Dzikiti S, Jovanovic NZ, Bugan R, Israel S, Maitre DC Le (2014) Measurement and modelling of evapotranspiration in three fynbos vegetation types. Water SA 40(2):189–198

  • Elhaddad A, Garcia LA (2011) ReSET-raster: surface energy balance model for calculating evapotranspiration using a raster approach. J Irrig Drain Eng 137(4):203–210

    Article  Google Scholar 

  • Ezzahar J, Chehbouni A, Er-Raki S, Hanich L (2009) Combining a large aperture scintillometer and estimates of available energy to derive evapotranspiration over several agricultural fields in a semi-arid region. Plant Biosyst 143(1):209–221

    Article  Google Scholar 

  • Ezzahar J, Chehbouni A, Hoedjes JCB, Chehbouni A (2007) On the application of scintillometry over heterogeneous grids. J Hydrol 334:493–501

    Article  Google Scholar 

  • Gao ZQ, Liu CS, Gao W, Chang NB (2011) A coupled remote sensing and the surface energy balance with topography algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain. Hydrol Earth Syst Sci 15:119–139

    Article  Google Scholar 

  • Gowda PH, Chavez JL, Colaizzi PD, Evett SR, Howell TA, Tolk JA (2007) Remote sensing based energy balance algorithms for mapping ET: current status and future challenges. Trans ASABE 50(5):1639–1644

    Article  Google Scholar 

  • Gowda PH, Chavez JL, Colaizzi PD, Evett SR, Howell TA, Tolk JA (2008) ET mapping for agricultural water management: present status and challenges. Irrig Sci 26:223–237

    Article  Google Scholar 

  • Gowda PH, Howell TA, Paul G, Colaizzi PD, Marek TH (2011) SEBAL for estimating hourly ET fluxes over irrigated and dryland cotton during BEAREX08. Proc 2011 World Environ Water Resour Congr 2787–2795

  • Gruber M, Fochesatto GJ (2013) A new sensitivity analysis and solution method for scintillometer measurements of area-averaged turbulent fluxes. Boundary-Layer Meteorol 149:65–83

    Article  Google Scholar 

  • Hartogensis O, DeBruin HAR (2005) Monin-Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116(2):253–276

    Article  Google Scholar 

  • Hartogensis O, Watts C, Rodriquez JC, DeBruin HAR (2003) Derivation of an effective height for scintillometers: La Poza experiment in Northwest Mexico. J Hydrometeorol 4:915–928

    Article  Google Scholar 

  • Hemakumara HM, Chandrapala L, Moene AF (2003) Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agric Water Manag 58:109–122

    Article  Google Scholar 

  • Hipps LE (1989) The infrared emissivities of soil and artemisia tridentate and subsequent temperature corrections in a shrub-steppe ecosystem. Remote Sens Environ 27:337–342

    Article  Google Scholar 

  • Hoedjes JCB, Chehbouni A, Ezzah J, Escadafal R, DeBruin HAR (2007) Comparison of large aperture scintillometer and eddy covariance measurements: can thermal infrared data be used to capture footprint-induced differences? J Hydrometeorol 8:144–159

    Article  Google Scholar 

  • Kalma JD, McVicar TR, McCabe MF (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv Geophys 29:421–469

    Article  Google Scholar 

  • Kite G, Droogers P (2000) Comparing evapotranspiration estimates from satellites hydrological models and field data. J Hydrol 229(1–2):3–18

    Article  Google Scholar 

  • Krause P, Boyle DP, Base1 F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97

  • Lagos LO, Lillo-Saavedra M, Fonseca D, Gonzalo C (2013) Evapotranspiration of partially vegetated surfaces from remote sensing. In: Lasaponara R, Masini N, Biscione M (Eds) Proc 33rd EARSeL Sympo p613–624

  • Lagouarde JP, Jacob F, Gu XF, Olioso A, Bonnefond JM, Kerr YH, McAneney KJ, Irvine M (2002) Spatialization of sensible heat flux over a heterogeneous landscape. Agronomie 22:627–633

    Article  Google Scholar 

  • Liu S, Hu G, Lu L, Mao D (2007) Estimation of regional evapotranspiration by TM/ETM data over heterogeneous surfaces. Photogramm Eng Remote Sens 73(10):1169–1178

    Article  Google Scholar 

  • Mengistu MG, Savage MJ (2010) Surface renewal method for estimating sensible heat flux. Water SA 36(1):9–18

    Article  Google Scholar 

  • Mkhwanazi M, Chavez JL (2012) Using METRIC to estimate surface energy fluxes over an alfalfa field in Eastern Colorado. Hydrology Days, Colorado State University USA (Accessed on August 26th 2014 from: http://hydrologydays.colostate.edu/Papers_2012/Mcebisi_paper.pdf)

  • Mkhwanazi M, Chavez JL, Rambikur EH (2012) Comparison of large aperture scintillometer and satellite-based energy balance models in sensible heat flux and crop evapotranspiration determination. Int J Remote Sens Appl 2(1):24–30

    Google Scholar 

  • Odhiambo GO, Savage MJ (2009) Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance. S Afr J Sci 105:2008–2016

    Google Scholar 

  • Papadavid G, Hadjimitsis DG, Toulious L, Michaelides S (2013) A modified SEBAL modeling approach for estimating crop evapotranspiration in semi-arid conditions. Water Resour Manag 27:3493–3506

    Article  Google Scholar 

  • Pauwels VRN, Timmermans WJ, Loew A (2008) Comparison of the estimated water and energy budgets of a large winter wheat field during AgriSAR 2006 by multiple sensors and models. J Hydrol 349:425–440

    Article  Google Scholar 

  • Pocas I, Paco TA, Cunha J, Andrade A, Silvestre J, Sousa A, Santos FL, Pereira LS, Allen RG (2014) Satellite-based evapotranspiration of a super-intensive olive orchard: application of METRIC algorithms. Biosyst Eng 128:69–81

    Article  Google Scholar 

  • Rambikur EH, Chavez JL (2012) Scintillometry for evapotranspiration estimation over irrigated alfalfa and dry grassland p 110–118 In: Proc Hydrol Days 2012 March 21–23 2012 North Ball Room-Lory Student Center Colorado State University USA

  • Samain B, Simons GWH, Voogt MP, Defloor W, Bink NJ, Pauwels VRN (2012) Consistency between hydrological model large aperture scintillometer and remote sensing based evapotranspiration estimates for a heterogeneous catchment. Hydrol Earth Sys Sci 16(7):2095–2107

    Article  Google Scholar 

  • Savage MJ, Everson CS, Odhiambo GO, Mengistu MG, Jarmain C (2004) Theory and practice of evapotranspiration measurement with special focus on SLS as an operational tool for the estimation of spatially-averaged evaporation. WRC Report No 1335/1/04 Water Res Comm Pretoria S Afr 204 pp (http://wwwreadperiodicalscom/201001/1965015051html#ixzz3Iqa2Ockm)

  • Savage MJ, Odhiambo GO, Mengistu MG, Everson CS, Jarmain C (2005) Theory and practice of evaporation measurement. The 12th SANCIAHS National Hydrol Symp MidRand SA (September 2005)

  • Senay GB, Bohms S, Singh RK, Gowda PH, Velpuri NM, Alemu H, Verdin JP (2013) Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. J Am Water Resour Assoc 49(3):577–591

    Article  Google Scholar 

  • Singh RK, Irmak A, Irmak S, Martin DL (2008) Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-Central Nebraska. J Irrig Drain Eng 134(3):273–285

    Article  Google Scholar 

  • Solignac PA, Brut A, Selves JL, Beteille JP, Gastellu-Etchegorry JP, Keravec P, Beziat P, Ceschia E (2009) Uncertainty analysis of computational methods for deriving sensible heat flux values from scintillometer measurements. Atmos Meas Tech 2:741–753

    Article  Google Scholar 

  • Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorol 58:367–389

    Article  Google Scholar 

  • Wright JL, Jensen ME (1978) Development and evaluation of evapotranspiration models for irrigation scheduling. Trans ASAE 21(1):88–96

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by King Saud University, Vice Deanship of Research Chairs. The assistance provided by the graduate students M.E. Abass, A.M. Zeyada, and A.G. Kayad in the accomplishment of the field research work was quite valuable. The unstinted cooperation and support extended by Mr. Jack King, Mr. Alan King, and their team in carrying out the research are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Madugundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Gaadi, K.A., Patil, V.C., Tola, E. et al. Evaluation of METRIC-derived ET fluxes over irrigated alfalfa crop in desert conditions using scintillometer measurements. Arab J Geosci 9, 441 (2016). https://doi.org/10.1007/s12517-016-2469-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2469-8

Keywords

Navigation