Skip to main content
Log in

Spatial distribution of pesticide residues in the groundwater of a condensed agricultural area

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Pesticide residues in groundwater have caused health and environmental concerns in regions in which the water is used for drinking and irrigation purposes. In this study, seven pesticide residues were studied in groundwater of a condensed agricultural area in the Al-Qassim region, Kingdom of Saudi Arabia using multiresidue gas chromatography coupled with mass spectrometry. Diazinon followed by chlorpyrifos and carbofuran was the most frequently detected pesticide in the collected water samples. In most locations, pesticide residues detected in groundwater samples were above the maximum acceptable levels of total and individual pesticide contamination of 0.5 and 0.1 μg L−1, respectively. The spatial distribution of the detected pesticides showed extremely high concentrations in intensified agricultural areas 55 km southwest of Buraydah. The results of the present study are expected to provide adequate information to enable the formulation of guidelines for permissible pesticide residues in water. Additionally, a regular monitoring program for pesticide residues in water is suggested based on the strict guidelines for pesticidal use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alabdula’aly A, Al-Rehaili A, Al-Zarah A, Khan M (2010) Assessment of nitrate concentration in groundwater in Saudi Arabia. Environ Monit Assess 161:1–9. doi:10.1007/s10661-008-0722-7

    Article  Google Scholar 

  • Al-Dawood AN, Al-Ghazal RA, Al-Jaser MH, Khalil GM (2009) Effect of chlorpyrifos on healing of cutaneous leishmaniasis lesions after treatment with Pentostam. Saudi J Biol Sci 16:31–36

    Article  Google Scholar 

  • Al-Harbi KM (2010) Monitoring of agricultural area trend in Tabuk region—Saudi Arabia using Landsat TM and SPOT data. Egypt J Remote Sens Space Sci 13:37–42. doi:10.1016/j.ejrs.2010.07.005

    Google Scholar 

  • Al-Mihanna AA, Salama AK, Abdalla MY (1998) Biodegradation of chlorpyrifos by either single or combined cultures of some soilborne plant pathogenic fungi. J Environ Sci Health B 33:693–704

    Article  Google Scholar 

  • Al-Salamah I, Ghazaw Y, Ghumman A (2011) Groundwater modeling of Saq Aquifer Buraydah Al Qassim for better water management strategies. Environ Monit Assess 173:851–860. doi:10.1007/s10661-010-1428-1

    Article  Google Scholar 

  • Al-Saleh I, Echeverria-Quevedo A, Al-Dgaither S, Faris R (1998) Residue levels of organochlorinated insecticides in breast milk: a preliminary report from Al-Kharj. Saudi Arabia J Environ Pathol Toxicol Oncol 17:37–50

    Google Scholar 

  • Al-Saleh I, Al-Doush I, Echeverria-Quevedo A (1999) Residues of pesticides in grains locally grown in Saudi Arabia. Bull Environ Contam Toxicol 63:451–459. doi:10.1007/s001289901001

    Article  Google Scholar 

  • Al-Saleh I, Al-Doush I, Alsabbaheen A, Mohamed GED, Rabbah A (2012) Levels of DDT and its metabolites in placenta, maternal and cord blood and their potential influence on neonatal anthropometric measures. Sci Total Environ 416:62–74. doi:10.1016/j.scitotenv.2011.11.020

    Article  Google Scholar 

  • Al-Wabel MI, El-Saeid MH, Al-Turki AM, Abdel- Nasser G (2011) Monitoring of pesticide residues in Saudi Arabia agricultural soils. Res J Environ Sci 5:269–278

    Article  Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture. FAO Irrigation and Drainage paper, No.29 Roma

  • Belmonte Vega A, Garrido Frenich A, Martínez Vidal JL (2005) Monitoring of pesticides in agricultural water and soil samples from Andalusia by liquid chromatography coupled to mass spectrometry. Anal Chim Acta 538:117–127. doi:10.1016/j.aca.2005.02.003

    Article  Google Scholar 

  • Chiron S, Fernandez-Alba A, Rodriguez A, Garcia-Calvo E (2000) Pesticide chemical oxidation: state-of-the-art. Water Res 34:366–377. doi:10.1016/S0043-1354(99)00173-6

    Article  Google Scholar 

  • Dahlgren JG, Takharb HS, Ruffaloc CA, Zwass M (2004) Health Effects of Diazinon on a Family. Journal of Toxicology: Clinical Toxicology 42:579–591. doi:10.1081/CLT-200026979

  • Davis T, Landolt P (2013) A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. J Chem Ecol 39:860–868. doi:10.1007/s10886-013-0278-z

    Article  Google Scholar 

  • Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66:646–61. doi:10.1016/j.neuron.2010.04.034

  • Di HJ, Aylmore LAG, Kookana RS (1998) Degradation rates of eight pesticides in surface and subsurface soils under laboratory and field conditions. Soil Sci 163:404–411

    Article  Google Scholar 

  • Duke S, Bajsa J, Pan Z (2013) Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 39:333–347. doi:10.1007/s10886-013-0240-0

    Article  Google Scholar 

  • EC Directive (1998) 98/83, Publicatieblad Europese Gemeenschapen 330/32-330/54, 1998

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33. doi:10.1016/S0300-483X(00)00452-2

    Article  Google Scholar 

  • Elliott JA, Cessna AJ, Nicholaichuk W, Tollefson LC (2000) Leaching rates and preferential flow of selected herbicides through tilled and untilled soil. J Environ Qual 29:1650–1656. doi:10.2134/jeq2000.00472425002900050036x

    Article  Google Scholar 

  • Font G, Manes J, Molto JC, Pico Y (1993) Solid-phase extraction in multi-residue pesticide analysis of water. J Chromatogr 642:135–161

    Article  Google Scholar 

  • Johnson AC, Besien TJ, Bhardwaj CL, Dixon A, Gooddy DC, Haria AH, White C (2001) Penetration of herbicides to groundwater in an unconfined chalk aquifer following normal soil applications. J Contam Hydrol 53:101–117. doi:10.1016/S0169-7722(01)00139-5

    Article  Google Scholar 

  • Kadian N, Gupta A, Satya S, Mehta RK, Malik A (2008) Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour Technol 99:4642–4647

    Article  Google Scholar 

  • Lari SZ, Khan NA, Gandhi KN, Meshram TS, Thacker NP (2014) Comparison of pesticide residues in surface water and ground water of agriculture intensive areas. J Environ Health Sci Eng 12:11–12

    Article  Google Scholar 

  • Ministry of Agriculture and Water (1984) Water atlas of Saudi Arabia. Saudi Arabian Printing Company Ltd., Riyadh

    Google Scholar 

  • Osman KA, Al-Humaid AM, Al-Rehiayani SM, Al-Redhaiman KN (2010) Monitoring of pesticide residues in vegetables marketed in Al-Qassim region. Saudi Arabia Ecotoxicol Environ Saf 73:1433–1439

    Article  Google Scholar 

  • Rittman S, Wrinn K, Evans S, Webb A, Rypstra A (2013) Glyphosate-based herbicide has contrasting effects on prey capture by two co-occurring wolf spider species. J Chem Ecol 39:1247–1253. doi:10.1007/s10886-013-0353-5

    Article  Google Scholar 

  • Sabik H, Jeannot R, Rondeau B (2000) Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides, including triazines and degradation products, in ground and surface waters. J Chromatogr A 885:217–236. doi:10.1016/S0021-9673(99)01084-5

    Article  Google Scholar 

  • Saunders M, Magnanti BL, Carreira SC, Yang A, Alamo-Hernández U, Riojas-Rodriguez H, Calamandrei G, Koppe JG, Krayer von Krauss M, Keune H, Bartonova A (2012) Chlorpyrifos and neurodevelopmental effects: a literature review and expert elicitation on research and policy. Environ Health 28:(Suppl 1):S5 doi:10.1186/1476-069X-11-S1-S5

  • Schuler M, Berenbaum M (2013) Structure and function of cytochrome P450S in insect adaptation to natural and synthetic toxins: insights gained from molecular modeling. J Chem Ecol 39:1232–1245. doi:10.1007/s10886-013-0335-7

    Article  Google Scholar 

  • Tomlin CDS (2003) The Pesticide Manual, a world compendium. 14th ed. Alton, British Crop Protection Council, Surrey, UK

  • Yang T, Stoopen G, Wiegers G, Mao J, Wang C, Dicke M, Jongsma MA (2012) Pyrethrins protect pyrethrum leaves against attack by western flower thrips, frankliniella occidentalis. J Chem Ecol 38:370–377. doi:10.1007/s10886-012-0097-7

    Article  Google Scholar 

Download references

Acknowledgments

The investigators of research project no. ALC012 thank the Promising Research Center in Biological Control and Agricultural Information, Al-Qassim University, Buraydah, KSA, for providing funding and unlimited support and help. The authors are also grateful to the Department of Soil Science, College of Food, and Agricultural Sciences, King Saud University, for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Al-Wabel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Wabel, M., El-Saeid, M.H., El-Naggar, A.H. et al. Spatial distribution of pesticide residues in the groundwater of a condensed agricultural area. Arab J Geosci 9, 120 (2016). https://doi.org/10.1007/s12517-015-2122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2122-y

Keywords

Navigation