Skip to main content
Log in

Nonlinear trend and seasonal signals in Mediterranean Sea level derived by multiresolution wavelet analysis of altimetry data

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Using multiresolution wavelet analysis, the spectral content of monthly maps of sea level anomaly time series on the Mediterranean Sea derived from satellite altimetry over the period 1993 to 2013 is investigated in order to assess its seasonal changes and its nonlinear trend. The multiresolution decomposition has extracted useful the seasonal signals (annual and semi-annual) and nonlinear trend of the analyzed time series by means of its signals of “details” and “approximations,” respectively. Details and approximations signals represent, respectively, the high-frequency and the low-frequency contained in the analyzed time series. The amplitude values for the annual signal are less than 10 cm with an average of 6.74 cm, while those for the semi-annual signal are mostly less than 4 cm with an average of 1.79 cm. However, the successive smoothing of the analyzed time series through the signals of approximations has allowed to better identify the rate and time spans of the increase and decrease of the Mediterranean Sea. The filtered trend has a slope about 2.30 mm/year compared to 2.46 mm/year of the original time series estimated by linear least squares regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbosa SM, Fernandes MJ, Silva ME (2005) Space-time analysis of sea level in the North-East Atlantic from T/P satellite altimetry. IAG Symp 129:248–253

    Google Scholar 

  • Barbosa S, Silva ME, Fernandes MJ (2006) Wavelet analysis of the Lisbon and Gibraltar North Atlantic oscillation winter indices. Int J Climatol 26(5):581–593

    Article  Google Scholar 

  • Bastos A, Trigo RM, Barbosa SM (2013) Discrete wavelet analysis of the influence of the North Atlantic Oscillation on Baltic Sea level. Tellus A 65:20077

    Article  Google Scholar 

  • Brown S, Ruf C, Keihm S, Kitiyakara A (2003) Preliminary validation and performance of the Jason Microwave Radiometer. Int Geosci Remote Se (IGARSS ‘03) 2:1077–1079

    Google Scholar 

  • Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. J Geophys Res 33:253–264

    Google Scholar 

  • Cazenave A, Cabanes C, Dominh K, Mangiarotti S (2001) Recent sea level changes in the Mediterranean Sea revealed by TOPEX/Poseidon satellite altimetry. Geophys Res Lett 28(8):1607–1610

    Article  Google Scholar 

  • Cazenave A, Bonnefond P, Mercier F, Dominh K, Toumazou V (2002) Sea level variations in the Mediterranean Sea and Black Sea from satellite altimetry and tide gauges. Glob Planet Chang 34(1–2):59–86

    Article  Google Scholar 

  • Chaux C (2006) Analyse en ondelettes M-bandes en arbre dual; application à la restauration d’images. Thèse de doctorat soutenue à l’Université de Marne-la-Vallée, France

    Google Scholar 

  • Cohen A, Daubechies I, Feauveau J (1992) Bi-orthogonal bases of compactly supported wavelets. Commun Pur Appl Math 45:485–560

    Article  Google Scholar 

  • Criado-Aldeanueva F, Del Rio-Vera J, García-Lafuente J (2008) Steric and mass-induced Mediterranean sea level trends from 14 years of altimetry data. Glob Planet Chang 60(3–4):563–575

    Article  Google Scholar 

  • DAAC, NASA Physical Oceanography (2006) TOPEX Microwave Radiometer Replacement product (http://podaac.jpl.nasa.gov/DATA_CATALOG/tmrinfo.html).

  • Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

    Article  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics (SIAM), USA, 357 pages

    Book  Google Scholar 

  • Del Rio-Vera J, Criado-Aldeanueva F, García-Lafuente J, Soto-Navarro FJ (2009) A new insight on the decreasing sea level trend over the Ionian basin in the last decades. Glob Planet Chang 68:232–235

    Article  Google Scholar 

  • Fenoglio-Marc L (2002) Long-term sea level change in the Mediterranean Sea from multi-satellite altimetry and tide gauges. Phys Chem Earth 27:1419–1431

    Article  Google Scholar 

  • Fenoglio-Marc L, Mariotti A, Sannino G, Meyssignac B, Carillo A, Struglia MV, Rixen M (2013) Decadal variability of net water flux at the Mediterranean Sea Gibraltar Strait. Glob Planet Chang 100:1–10

    Article  Google Scholar 

  • Flinchem EP, Jay DA (2000) An introduction to wavelet transform tidal analysis methods. Estuar Coast Shelf Sci 51:177–200

    Article  Google Scholar 

  • Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3-1–3-41

    Article  Google Scholar 

  • Gomis D, Ruiz S, Sotillo MG, Álvarez-Fanjul E, Terradas J (2008) Low frequency Mediterranean sea level variability: the contribution of atmospheric pressure and wind. Glob Planet Chang 63:215–229

    Article  Google Scholar 

  • Grossman A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math 15:723–736

    Article  Google Scholar 

  • Haddad M, Belbachir MF, Kahlouche S (2011a) Long-term global mean sea level variability revealed by singular spectrum analysis. Int J Acad Res 3(2-III):411–420

    Google Scholar 

  • Haddad M, Belbachir MF, Kahlouche S, Rami A (2011b) Investigation of Mediterranean sea level variability by singular spectrum analysis. J Math Technol 2(1):45–53

    Google Scholar 

  • Haddad M, Hassani H, Taibi H (2013) Sea level in the Mediterranean Sea: seasonal adjustment and trend extraction within the framework of SSA. Earth Sci Inform 6(2):99–111

    Article  Google Scholar 

  • Holschneider M (1998) Wavelets: an analysis tool. Oxford University Press, USA, p. 423

  • Jevrejeva S, Moore JC, Grinsted A (2003) Influence of the Arctic Oscillation and El Nino-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: the wavelet approach. J Geophys Res 108(D21):4677–4687

    Article  Google Scholar 

  • Jevrejeva S, Moore JC, Woodwoth PL, Grinsted A (2005) Influence of large-scale atmospheric circulation on European sea level: results based on the wavelet transform method. Tellus A 57(2):183–193

    Article  Google Scholar 

  • Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111, C09012

    Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1994) Wavelet analysis in geophysics: an introduction. In: Foufoula-Georgiou K (ed) Wavelets in geophysics. Academic, New York, pp 1–43

    Google Scholar 

  • Lau KM, Weng HY (1995) Climate signal detection using wavelet transform: how to make a time series sing. Bull Am Meteorol Soc 76:2391–2402

    Article  Google Scholar 

  • Lemarié P, Meyer Y (1986) Ondelettes et bases hilbertiennes. Rev Mat Iberoam 2:1–18

    Article  Google Scholar 

  • Lemoine FG, Zelensky NP, Chinn DS, Pavlis DE, Rowlands DD, Beckley BD, Luthcke SB, Willis P, Ziebart M, Sibthorpe A (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46:1513–1540

    Article  Google Scholar 

  • Lionello P (2012) The climate of the mediterranean region: from the past to the future. Elsevier edition, p 502

  • Mak M (1995) Orthogonal wavelet analysis: interannual variability in the sea surface temperature. Bull Am Meteorol Soc 76:2179–2186

    Article  Google Scholar 

  • Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal 11(7):674–693

    Article  Google Scholar 

  • Mallat S (1999) A wavelet tour of signal processing, 2nd edn. Academic, USA, 637 pages

    Google Scholar 

  • Meyer Y (1992) Les Ondelettes: Algorithmes et Applications. Armand Colin, Paris, 172 pages.

  • Meyers SD, Kelly BG, O’Brien JJ (1993) An introduction to wavelet analysis in oceanography and meteorology: with application to the dispersion of Yanai waves. Mon Weather Rev 121:2858–2866

    Article  Google Scholar 

  • Pascual A, Marcos M, Gomis D (2008) Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J Geophys Res 113, C07011

    Google Scholar 

  • Rangelova EV, Grebenitcharsky RS, Sideris MG (2006) Identifying sea-level rates by a wavelet-based multiresolution analysis of altimetry and tide gauge data. Bureau Gravimétrique International & International Geoid Service Joint Bulletin. Newton’s Bull 3:104–115

    Google Scholar 

  • Ray RD (1999) A global ocean tide model from TOPEX/Poseidon Altimetry: GOT99.2. NASA Tech Memo, NASA/TM-1999-209478, 58 pages.

  • Rioul O, Vetterli M (1991) Wavelet and signal processing. IEEE Signal Proc Mag 8(4):14–38

    Article  Google Scholar 

  • Ross T, Garett C, Le Traon PY (2000) Western Mediterranean sea level rise: changing exchange flow through the Strait of Gibraltar. Geophys Res Lett 27:2949–2952

    Article  Google Scholar 

  • Rummel R (1993) Satellite altimetry in geodesy and oceanography. Lect Notes Earth Sci 50:453–466

    Article  Google Scholar 

  • SSALTO/DUACS User Handbook (2014) (M)SLA and (M)ADT near-real time and delayed time products. CLS-DOS-NT-06-034, SALP-MU-P-EA-21065-CLS, Issue 4.2

  • Taibi H, Kahlouche S, Haddad M, Rami A (2013) Trends in global and regional sea level from satellite altimetry within the framework of Auto-SSA. Arab J Geosci 6(12):4575–4584

    Article  Google Scholar 

  • Tran N, Labroue S, Philipps S, Bronner E, Picot N (2010) Overview and update of the sea state bias corrections for the Jason-2, Jason-1 and TOPEX missions. Mar Geod 33(1):348–362

    Article  Google Scholar 

  • Vigo I, García D, Chao BF (2005) Change of sea level trend in the Mediterranean and Black seas. J Mar Res 63:1085–1100

    Article  Google Scholar 

  • Vigo I, Sanchez-Reales JM, Trottini M, Chao BF (2011) Mediterranean sea level variations: analysis of the satellite altimetric data, 1992–2008. J Geodyn 52(3–4):271–278

    Article  Google Scholar 

  • Wahr JW (1985) Deformation of the Earth induced by polar motion. J Geophys Res 90:9363–9368

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofiane Khelifa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelifa, S., Rami, A. Nonlinear trend and seasonal signals in Mediterranean Sea level derived by multiresolution wavelet analysis of altimetry data. Arab J Geosci 8, 8969–8974 (2015). https://doi.org/10.1007/s12517-015-1896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1896-2

Keywords

Navigation