Skip to main content

Advertisement

Log in

Trends in global and regional sea level from satellite altimetry within the framework of auto-SSA

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The sea level change is a crucial indicator of our climate. The spatial sampling offered by satellite altimetry and its continuity during the last 18 years are major assets to provide an improved vision of the sea level changes. In this paper, we analyze the University of Colorado database of sea level time series to determine the trends for 18 large ocean regions by means of the automatic trend extraction approach in the framework of the singular spectrum analysis technique. Our global sea level trend estimate of 3.19 mm/year for the period from 1993 to 2010 is comparable with the 3.20-mm/year sea level rise since 1993 calculated by AVISO Altimetry. However, the trends from the different ocean regions show dissimilar patterns. The major contributions to the global sea level rise during 1993–2010 are from the Indian Ocean (3.78 ± 0.08 mm/year).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AVISO:

Archivage Validation et Interprétation des données des Satellites Océanographiques

IPCC:

Intergovernmental Panel on Climate Change

GDR:

Geophysical Data Records

KNMI:

Royal Netherlands Meteorological Institute

MGDR:

Merged Geophysical Data Record

TAR WG:

Third Assessment Report Work Group

TOPEX:

Ocean Topography Experiment

References

  • Allison I, Bindoff NL, Bindschadler RA, Cox PM, de Noblet N, England MH, Francis JE, Gruber N, Haywood AM, Karoly DJ, Kaser G, Le Quéré C, Lenton TM, Mann ME, McNeil BI, Pitman AJ, Rahmstorf S, Rignot E, Schellnhuber HJ, Schneider SH, Sherwood SC, Somerville RCJ, Steffen K, Steig EJ, Visbeck M, Weaver AJ (2009) The Copenhagen diagnosis: updating the world on the latest climate science. The University of New South Wales Climate Change Research Centre, Sydney, 60

    Google Scholar 

  • Alexandrov T (2006) Software package for automatic extraction and forecast of additive components of time series in the framework of the Caterpillar-SSA approach. PhD thesis, St. Petersburg State University. In Russian, available at http://www.pdmi.ras.ru/_theo/autossa. Accessed 25 October 2010

  • Alexandrov T (2009) A method of trend extraction using singular spectrum analysis. REVSTAT-Stat J 7(1):1–22

    Google Scholar 

  • Alexandrov T, Bianconcini S, Dagum EB, Maass P, McElroy TS (2008) A review of some modern approaches to the problem of trend extraction. US Census Bureau TechReport RRS2008/03

  • Alexandrov T, Golyandina N (2005) Automatic extraction and forecast of time series cyclic components within the framework of SSA. In Proc. of the 5th St. Petersburg Workshop on Simulation: 45–50

  • AVISO Altimetry (2011) Mean sea level rise. http://www.aviso.oceanobs.com/en/news/ocean-indicators/mean-sea-level. Accessed 15 September 2011

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys J Int 33(3):253–264

    Article  Google Scholar 

  • Cartwright DE, Tayler RJ (1971) New computations of the tide-generating potential. Geophys J R Astron Soc 23(1):45–73

    Article  Google Scholar 

  • Chambers DP, Ries JC, Urban TJ (2003) Calibration and verification of Jason-1 using global along-track residuals with TOPEX. Mar Geod 26:305–317. doi:10.1080/714044523

    Article  Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi:10.1029/2005GL024826

    Article  Google Scholar 

  • Douglas BC (1997) Global sea rise: a redetermination. Surv Geophys 18:279–292. doi:10.1023/A:1006544227856

    Article  Google Scholar 

  • Ghodsi M, Hassani H, Sanei S (2010) Extracting fetal heart signal from noisy maternal ECG by singular spectrum analysis. Stat Interface 3(3):399–411

    Article  Google Scholar 

  • Ghodsi M, Hassani H, Sanei S, Hicks Y (2009) The use of noise information for detection of temporomandibular disorder. J Biomed Sig Process Control 4(2):79–85

    Article  Google Scholar 

  • Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Haddad M, Belbachir MF, Kahlouche S (2011a) Long-term global mean sea level variability revealed by singular spectrum analysis. Int J Acad Res 3(2-III):411–420

    Google Scholar 

  • Haddad M, Belbachir MF, Kahlouche S, Rami A (2011b) Investigation of Mediterranean sea level variability by singular spectrum analysis. J Math Technol 2(1):45–53

    Google Scholar 

  • Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5(2):239–257

    Google Scholar 

  • Hassani H (2009) Singular spectrum analysis based on the minimum variance estimator. Nonlinear Anal Real World Appl 11(3):2065–2077

    Article  Google Scholar 

  • Hassani H (2010) A brief introduction to singular spectrum analysis. Paper in pdf version available at: www.ssa.cf.ac.uk/a_brief_introduction_to_ssa.pdf. Accessed 13 November 2010

  • Hassani H, Dionisio A, Ghodsi M (2009a) The effect of noise reduction in measuring the linear and nonlinear dependency of financial markets. Nonlinear Anal Real World Appl 11(1):492–502

    Article  Google Scholar 

  • Hassani H, Heravi H, Zhigljavsky A (2009b) Forecasting European industrial production with singular spectrum analysis. Int J Forecast 25(1):103–118

    Article  Google Scholar 

  • Hassani H, Mahmoudvand R, Yarmohammadi M (2010a) Filtering and denoising in the linear regression model. Fluctuation Noise Lett 9(4):343–358

    Article  Google Scholar 

  • Hassani H, Soofi A, Zhigljavsky A (2010b) Predicting daily exchange rate with singular spectrum analysis. Nonlinear Anal Real World Appl 11(3):2023–2034

    Article  Google Scholar 

  • Hassani H, Thomakos D (2010) A review on singular spectrum analysis for economic and financial time series. Stat Interface 3(3):377–397

    Article  Google Scholar 

  • Hassani H, Zhigljavsky A (2009) Singular spectrum analysis: methodology and application to economics data. J Syst Sci Complex 22(2):372–394

    Article  Google Scholar 

  • Hassani H, Zhigljavsky A, Zhengyuan X (2011) Singular spectrum analysis based on the perturbation theory. Nonlinear Anal Real World Appl 12(5):2752–2766

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, http://www.grida.no/publications/other/ipcc_tar/. Accessed 05 February 2011

  • IPCC (2007a) Table SPM.1, in (section): 3. Projected climate change and its impacts. In Core Writing Team, et al. Summary for policymakers. Climate change 2007: synthesis report. A contribution of working groups I, II, and III to the fourth assessment report of the Integovernmental Panel on Climate Change. Geneva, Switzerland: IPCC. http://www.ipcc.ch/publications_and_data/ar4/syr/en/spms3.html. Accessed 05 February 2011

  • IPCC (2007b) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Table SPM.3" (pdf). Projected global average surface warming and sea level rise at the end of the 21st century. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf. Accessed 05 February 2011

  • Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111:C09012. doi:10.1029/2005JC003229

    Article  Google Scholar 

  • Lemoine FG, Zelensky NP, Chinn DS, Pavlis DE, Rowlands DD, Beckley BD, Luthcke SB, Willis P, Ziebart M, Sibthorpe A et al (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46:1513–1540

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 820, Change projections of global average sea level change for the 21st century. Chapter 10

    Google Scholar 

  • Patterson K, Hassani H, Heravi S, Zhigljavsky A (2011) Multivariate singular spectrum analysis for forecasting revisions to real-time data. J Appl Stat 38(10):2183–2211

    Article  Google Scholar 

  • Pascual A, Marcos M, Gomis D (2008) Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J Geophys Res 113(C7)

  • Peltier WR (2001) Chapter 4 Global glacial isostatic adjustment and modern instrumental records of relative sea level history. International Geophysics 75:65–95, Sea level rise—history and consequences

    Article  Google Scholar 

  • Peltier WR (2002) Global glacial isostatic adjustment: palaeogeodetic and space-geodetic tests of the ICE-4G (VM2) model. J Quat Sci 17(5–6):491–510

    Article  Google Scholar 

  • Peltier WR (2009) Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment. Quat Sci Rev 28:1658–1674

    Article  Google Scholar 

  • Peltier WR, Luthcke SB (2009) On the origins of earth rotation anomalies: new insights on the basis of both “paleogeodetic” data and gravity recovery and climate experiment (GRACE) data. J Geophys Res 114(B11)

  • Ray RD (1999) A global ocean tide model from TOPEX/Poseidon Altimetry: GOT99.2. NASA Techincal Memo 1999–209478. NASA Goddard Space Flight Center

  • Tran N, Labroue S, Philipps S, Bronner E, Picot N (2010) Overview and update of the sea state bias corrections for the jason-2, jason-1 and TOPEX missions. Mar Geod 33(1,1):348

    Article  Google Scholar 

  • Wahr JM (1985) Deformation induced by polar motion. J Geophys Res 90(B11):9363

    Article  Google Scholar 

Web sites

Download references

Acknowledgments

The authors are enormously grateful to Theodore Alexandrov for providing the AutoSSA computer program. The authors are also grateful to Colorado Center for Astrodynamics Research of the University of Colorado–Boulder for providing the global and regional sea level time series. The authors greatly thank the anonymous reviewers for their valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Taibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taibi, H., Kahlouche, S., Haddad, M. et al. Trends in global and regional sea level from satellite altimetry within the framework of auto-SSA. Arab J Geosci 6, 4575–4584 (2013). https://doi.org/10.1007/s12517-012-0776-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-012-0776-2

Keywords

Navigation