Skip to main content
Log in

Arsenic Speciation in Rice, Mechanisms and Associated Health Risk Through Rice Consumption in Various Districts of Khyber Pakhtunkhwa, Pakistan

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

Arsenic (As) is one of the toxic metalloids, therefore, can cause health risk in the consumers through consumption of contaminated food and rice. The current study focused on As speciation in rice, bioavailability, mechanisms and its potential human health risk. For this purpose, rice and soil samples were collected from 16 different districts (non-mining and mining sites) of Khyber Pakhtunkhwa (Pakistan). Soil physicochemical characteristic such as texture, electrical conductivity (EC), organic matter (OM), pH, iron (Fe) and phosphorus (P) were determined. Total arsenic (AsT) concentrations were analyzed using ICP-MS, while the arsenite (As3+), arsenate (As5+), arsenobetine (BAs), dimethylarsenic (DMA) and monomethyl arsenic (MMA) were determined by HPLC–ICP-MS method. The highest AsT (0.28 mg/kg) was observed in the rice sample of DI Khan District and lowest (0.06 mg/kg) in Shangla District. However, these findings were found within the permissible limits set by various authorities. Furthermore, results showed higher concentrations of inorganic As (Asi) than organic As (Aso) species in rice. The estimated daily intake (EDI) and incremental lifetime cancer risk (ILTCR) were used to evaluate the potential human health risk for As consumption in rice. Results revealed that the rice samples collected from the district having mining activities had higher value of As (0.28 mg/kg of AsT) as compared to non-mining (0.072 mg/kg of AsT). The highest ILTCR value (0.00196) was observed for rice collected from mining districts. This study revealed that mining activities have great influence on the As contamination of soil and grown rice. This study recommends the use of geo-sorbents as soil amendments in districts having mining activities for the purpose to lower As availability in soil and its bioaccumulation in growing rice that will help to keep lower the potential risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data and materials as well as software application or custom code support the published claims and comply with field standards.

Code Availability

Software application or custom code.

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128(3):1120–1128

    Article  CAS  Google Scholar 

  • Afroz H, Su S, Carey M, Meharg AA, Meharg C (2019) Inhibition of microbial methylation via arsM in the rhizosphere: arsenic speciation in the soil to plant continuum. Env Sci Technol 53(7):3451–3463

    Article  CAS  Google Scholar 

  • Ahmed ZU, Panaullah GM, Gauch H, McCouch SR, Tyagi W, Kabir MS, Duxbury JM (2011) Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil 338(1–2):367–382

    Article  CAS  Google Scholar 

  • Ahmed MK, Shaheen N, Islam MS, Habibullah-Al-Mamun M, Islam S, Islam MM, Bhattacharjee L (2016) A comprehensive assessment of arsenic in commonly consumed foodstuffs to evaluate the potential health risk in Bangladesh. Sci Total Environ 544:125–133

    Article  CAS  Google Scholar 

  • Anawar HM, Rengel Z, Damon P, Tibbett M (2018) Arsenic-phosphorus interactions in the soil-plant-microbe system: dynamics of uptake, suppression and toxicity to plants. Environ Pollut 233:1003–1012

    Article  CAS  Google Scholar 

  • Aqeel M, Maah M, Yusoff I (2014) Soil Contamination, Risk Assessment and Remediation. In: Risk E (ed) MC Hernandez soriano. Assessment of Soil Contamination. InTech, London, pp 3–56

    Google Scholar 

  • Ashraf MA, Maah MJ, Yusoff I (2014) Soil contamination, risk assessment and remediation. Environ Risk Assess Soil Cont 1:3–56

    Google Scholar 

  • Azad MAK, Islam MN, Alam A, Mahmud H, Islam M, Karim MR, Rahman M (2009) Arsenic uptake and phytotoxicity of T-aman rice (Oryza sativa L.) grown in the As-amended soil of Bangladesh. Environmentalist 29(4):436–440

    Article  Google Scholar 

  • Azam SMGG, Sarker TC, Naz S (2016) Factors affecting the soil arsenic bioavailability, accumulation in rice and risk to human health: a review. Toxicol Mech Method 26(8):565–579

    Article  Google Scholar 

  • Bashir MU, Akbar N, Iqbal A, Zaman H (2010) Effect of different sowing dates on yield and yield components of direct seeded coarse rice (Oryza sativa L). Pak J Agri Sci 47(4):361–365

    Google Scholar 

  • Bhattacharya P, Samal A, Majumdar J, Santra S (2010) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in gangetic West Bengal. India Paddy Water Environ 8(1):63–70

    Article  Google Scholar 

  • Bibi M, Hashmi MZ, Malik RN (2015) Human exposure to arsenic in groundwater from Lahore district. Pakistan Environ Toxicol Pharmacol 39(1):42–52

    Article  CAS  Google Scholar 

  • Bogdan K, Schenk MK (2009) Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.). Environ Pollut 157(10):2617–2621

    Article  CAS  Google Scholar 

  • Campbell RN, Greathead AS, Myers DF, De Boer GJ (1985) Factors related to control of clubroot of crucifers in the Salinas Valley of California. Phytopathology 75:665–670

  • Carey M, Meharg C, Williams P, Marwa E, Jiujin X, Farias JG, Meharg AA (2020) Global sourcing of low-inorganic arsenic rice grain. Exposure Health 12(4):711–719

    Article  Google Scholar 

  • Caylak E (2012) Health risk assessment for arsenic in water sources of Cankiri province of Turkey. Clean-Soil Air Water 40(7):728–734

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Mukherjee SC (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58(1):3–22

    Article  CAS  Google Scholar 

  • Chatterjee S, Datta S, Mallick PH, Mitra A, Veer V, Mukhopadhyay SK (2013) Use of wetland plants in bioaccumulation of heavy metals. In: Gupta DK (ed) Plant-based remediation processes. Springer, Amsterdam, pp 117–139

    Chapter  Google Scholar 

  • Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A, Meharg AA (2010) Influence of phosphate addition on the arsenic uptake by wheat (triticum durum) grown in arsenic polluted soils. Fresenius Environ Bull 19(5):838–845

    CAS  Google Scholar 

  • Dave R, Tripathi RD, Dwivedi S, Tripathi P, Dixit G, Sharma YK, Chakrabarty D (2013) Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. J Hazard Mater 262:1123–1131

    Article  CAS  Google Scholar 

  • Dávila-Esqueda ME, Jiménez-Capdeville ME, Delgado JM, De la Cruz E, Aradillas-García C, Jiménez-Suárez V, Llerenas JR (2012) Effects of arsenic exposure during the pre-and postnatal development on the puberty of female offspring. Exp Toxicol Pathol 64(1–2):25–30

    Article  Google Scholar 

  • Dembitsky VM, Rezanka T (2003) Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms. Plant Sci 165(6):1177–1192

    Article  CAS  Google Scholar 

  • Dolphen R, Thiravetyan P (2019) Reducing arsenic in rice grains by leonardite and arsenic–resistant endophytic bacteria. Chemosphere 223:448–454

    Article  CAS  Google Scholar 

  • Duan J, Tan J (2013) Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmos Environ 74:93–101

    Article  CAS  Google Scholar 

  • Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Zhou W (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    Article  CAS  Google Scholar 

  • Fu Y, Chen M, Bi X, He Y, Ren L, Xiang W, Ma Z (2011) Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island. China Environ Pollut 159(7):1757–1762

    Article  CAS  Google Scholar 

  • Gan Y, Huang X, Li S, Liu N, Li YC, Freidenreich A, Dai J (2019) Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of yellow river delta. J Clean Prod 221:98–107

    Article  CAS  Google Scholar 

  • Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597

    Article  CAS  Google Scholar 

  • Geng C-N, Zhu Y-G, Liu W-J, Smith SE (2005) Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquat Bot 83(4):321–331

    Article  CAS  Google Scholar 

  • Hansel CM, La Force MJ, Fendorf S, Sutton S (2002) Spatial and temporal association of As and Fe species on aquatic plant roots. Environ Sci Technol 36(9):1988–1994

    Article  CAS  Google Scholar 

  • http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList. Accessed 21 Feb 2022.

  • http://mnfsr.gov.pk/mnfsr/userfiles1/file/FCA%20Working%20Paper%20Final%2025%20Mrch.pdf

  • Huhmann B, Harvey CF, Uddin A, Choudhury I, Ahmed KM, Duxbury JM, Ellis T, van Geen A (2019) Inversion of high-arsenic soil for improved rice yield in Bangladesh. Environ Sci Technol 53:3410–3418

    Article  CAS  Google Scholar 

  • Inskeep WP, McDermott TR, Fendorf S (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. Environ Chem Arsenic 183–215

  • Instruments M (2004) Mastersizer 2000E operators guide. Malvern Instruments Ltd., Worcestershire, UK

    Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004a) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430(6995):68

    Article  CAS  Google Scholar 

  • Islam M, Jahiruddin M, Islam S (2004b) Assessment of arsenic in the water-soil-plant systems in gangetic floodplains of Bangladesh. Asian J Plant Sci 3(4):489–493

    Article  Google Scholar 

  • Izah SC, Chakrabarty N, Srivastav AL (2016) A review on heavy metal concentration in potable water sources in Nigeria: human health effects and mitigating measures. Expos Health 8(2):285–304

    Article  CAS  Google Scholar 

  • Jang Y, Somanna Y, Kim H (2016) Source, distribution, toxicity and remediation of arsenic in the environment–a review. Int J Appl Environ Sci 11(2):559–581

    Google Scholar 

  • Javed A, Farooqi A, Baig ZU, Ellis T, van Geen A (2020) Soil arsenic but not rice arsenic increasing with arsenic in irrigation water in the Punjab plains of Pakistan. Plant Soil 450(1):601–611

    Article  CAS  Google Scholar 

  • Jehan N, Waqas M, Khan MA, Muhammad J (2019) Arsenic concentration in paddy soil and its accumulation in rice: a health risk assessment. JHES 52(1):27

    Google Scholar 

  • Jia Y, Huang H, Sun G-X, Zhao F-J, Zhu Y-G (2012) Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environ SciTechnol 46:8090–8096

    Article  CAS  Google Scholar 

  • Jia Y, Sun GX, Huang H, Zhu YG (2013) Biogas slurry application elevated arsenic accumulation in rice plant through increased arsenic release and methylation in paddy soil. Plant Soil 365(1–2):387–396

    Article  CAS  Google Scholar 

  • Joint F, Additives WECF, Organization WH (2011) Safety evaluation of certain contaminants in food: prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA).

  • Karim MM (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34(1):304–310

    Article  CAS  Google Scholar 

  • Kato LS, Fernandes EADN, Raab A, Bacchi MA, Feldmann J (2019) Arsenic and cadmium contents in Brazilian rice from different origins can vary more than two orders of magnitude. Food Chem 286:644–650

    Article  CAS  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing. China Environ Pollut 152:686–692

    Article  CAS  Google Scholar 

  • Khan S, Rehman S, Khan AZ, Khan MA, Shah MT (2010) Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, Northern Pakistan. Ecotoxicol Environ Saf 73:1820–1827

    Article  CAS  Google Scholar 

  • Khan S, Reid BJ, Li G, Zhu YG (2014) Application of biochar to soil reduces cancer risk via rice consumption: a case study in miaoqian village, Longyan. China Environ Int 68:154–161

    Article  CAS  Google Scholar 

  • Khan S, Shah IA, Muhammad S, Malik RN, Shah MT (2015) Arsenic and heavy metal concentrations in drinking water in Pakistan and risk assessment: a case study. Hum Ecol Risk Assess Int J 21(4):1020–1031

    Article  CAS  Google Scholar 

  • Khan KS, Mack R, Castillo X, Kaiser M, JoergensenRG (2016a) Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma. https://doi.org/10.1016/j.geoderma.2016.02.019

    Article  Google Scholar 

  • Khan S, Rauf R, Muhammad S, Qasim M, Din I (2016b) Arsenic and heavy metals health risk assessment through drinking water consumption in the Peshawar District Pakistan. Human Ecolo Risk Assessment 22(3):581–596

    Article  CAS  Google Scholar 

  • Kirk GJD (1997) Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytol 135(2):191–200

  • Kowalczyk A, Latowski D (2018) In role of plant-microorganism interactions in plant tolerance to arsenic. mechanisms of arsenic toxicity and tolerance in plants, Berlin, pp 219–237

    Google Scholar 

  • Kumar M, Rahman MM, Ramanathan A, Naidu R (2016) Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Sci Total Environ 539:125–134

    Article  CAS  Google Scholar 

  • Kwon JC, Nejad ZD, Jung MC (2017) Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. CATENA 148:92–100

    Article  CAS  Google Scholar 

  • Lei M, Tie B, Zeng M, Qing P, Song Z, Williams PN, Huang Y (2013) An arsenic-contaminated field trial to assess the uptake and translocation of arsenic by genotypes of rice. Environ Geochem Health 35(3):379–390

    Article  CAS  Google Scholar 

  • Li RY, Stroud JL, Ma JF, Mcgrath SP, Zhao FJ (2009) Mitigation of arsenic accumulation in rice withwater management and silicon fertilizers. Environ SciTechnol 43:3778–3783

    Article  CAS  Google Scholar 

  • Li G, Sun GX, Williams PN, Nunes L, Zhu YG (2011) Inorganic arsenic in Chinese food and its cancer risk. Environ Int 37(7):1219–1225

    Article  CAS  Google Scholar 

  • Li J, Dong F, Lu Y, Yan Q, Shim H (2014) Mechanisms controlling arsenic uptake in rice grown in mining impacted regions in South China. PLoS ONE. https://doi.org/10.1371/journal.pone.0108300

    Article  Google Scholar 

  • Li P, Zhi YY, Shi JC, Zeng LZ, Wu LS (2015) County-scale temporal-spatial distribution and variability tendency of heavy metals in arable soils influenced by policy adjustment during the last decade: a case study of Changxing, China. Environ Pollut Res 22:17937–17947

    Article  CAS  Google Scholar 

  • Liao N, Seto E, Eskenazi B, Wang M, Li Y, Hua J (2018) A comprehensive review of arsenic exposure and risk from rice and a risk assessment among a cohort of adolescents in Kunming China. Int J Environ Res Public Health 15(10):2191

    Article  CAS  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA, Smith SE (2004a) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture?. J Exp Botany 55(403):1707–1713

    Article  CAS  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA, Smith SE (2004b) Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytol 162(2):481–488

    Article  CAS  Google Scholar 

  • Liu L, Han J, Xu X, Xu Z, Abeysinghe KS, Atapattu AJ, Qiu G (2020) Dietary exposure assessment of cadmium, arsenic, and lead in market rice from Sri Lanka. Environ Sci Pollut Res 27(34):42704–42712

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105(29):9931–9935

    Article  CAS  Google Scholar 

  • Ma L, Wang L, Jia Y, Yang Z (2016) Arsenic speciation in locally grown rice grains from Hunan Province, China: spatial distribution and potential health risk. Sci Total Environ 557:438–444

    Article  Google Scholar 

  • Magnusson B, Örnemark U (2014) Eurachem guide: the fitness for purpose of analytical methods—a laboratory guide to method validation and related topics, 2nd edn. Eurachem. https://www.eurachem.org

  • Malana MA, KhosaMA (2011) Groundwater pollution with special focus on arsenic, Dera Ghazi Khan-Pakistan. J Saudi Chem Soc 15(1):39–47

    Article  CAS  Google Scholar 

  • Marin A, Masscheleyn P, Patrick W (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139(2):175–183

    Article  CAS  Google Scholar 

  • Martin-Chouly C, Morzadec C, Bonvalet M, Galibert M-D, Fardel O, Vernhet L (2011) Inorganic arsenic alters expression of immune and stress response genes in activated primary human T lymphocytes. Mol Immunol 48(6–7):956–965

    Article  CAS  Google Scholar 

  • Masood N, Farooqi A, Zafar MI (2019) Health risk assessment of arsenic and other potentially toxic elements in drinking water from an industrial zone of Gujrat, Pakistan: a case study. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7223-8

    Article  Google Scholar 

  • Masood N, Farooqi A, Zafar MI (2019b) Health risk assessment of arsenic and other potentially toxic elements in drinking water from an industrial zone of Gujrat, Pakistan: a case study. Environ Monit Assess 191(2):1–15

    Article  CAS  Google Scholar 

  • Mataveli LRV, Buzzo ML, Arauz LJD, Carvalho MDFH, Arakaki EEK, Matsuzaki R, Tiglea P (2016) Total arsenic, cadmium, and lead determination in Brazilian rice samples using ICP-MS. J Anal Methods Chem. https://doi.org/10.1155/2016/3968786

    Article  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Env Sci Technol 37(2):229–234

    Article  CAS  Google Scholar 

  • Meharg AA, Zhao F-J (2012) Strategies for producing low arsenic rice. In: Meharg AA, Zhao F-J (eds) Arsenic & rice. Springer, Berlin, pp 139–151

    Chapter  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Feldmann J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Env Sci Technol 43(5):1612–1617

    Article  CAS  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21(7):2133–2142

    Article  CAS  Google Scholar 

  • Mitra A, Chatterjee S, Gupta DK (2020) Environmental arsenic exposure and human health risk. In: Fares A, Singh SK (eds) Arsenic water resources contamination. Springer, Berlin, pp 103–129

    Chapter  Google Scholar 

  • Mondal D, Polya DA (2008) Rice is a major exposure route for arsenic in chakdaha block, Nadia District, West Bengal, India: a probabilistic risk assessment. J Appl Geochem 23(11):2987–2998

    Article  CAS  Google Scholar 

  • Muhammad S, Shah MT, Khan S (2010) Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food Chem Toxicol 48(10):2855–2864

    Article  CAS  Google Scholar 

  • Muhammad S, Shah MT, Khan S (2011) Heavy metal concentrations in soil and wild plants growing around Pb–Zn sulfide terrain in the Kohistan region, Northern Pakistan. Microchem J 99:67–75

    Article  CAS  Google Scholar 

  • Mundey MK, Roy M, Roy S, Awasthi MK, Sharma R (2013) Antioxidant potential of Ocimum sanctum in arsenic induced nervous tissue damage. Braz J Veterinary Pathol 6(3):95–101

    Google Scholar 

  • Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L, Panda SK (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210

    Article  CAS  Google Scholar 

  • Nguyen VA, Bang S, Viet PH, Kim K-W (2009) Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province. Vietnam Environ Int 35(3):466–472

    Article  CAS  Google Scholar 

  • Niazi NK, Singh B, Shah P (2011) Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ Sci Technol 45(17):7135–7142

    Article  CAS  Google Scholar 

  • O’Bryant SE, Edwards M, Menon C, Gong G, Barber R (2011) Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a project frontier study. Int J Environ Res Public Health 8(3):861–874

    Article  Google Scholar 

  • Paikaray S, Banerjee S, Mukherji S (2005) Sorption of arsenic onto vindhyan shales: role of pyrite and organic carbon. Curr Sci 88(10):1580–1585

    Google Scholar 

  • Parvez F, Chen Y, Yunus M, Olopade C, Segers S, Slavkovich V, Islam T (2013) Arsenic exposure and impaired lung function. findings from a large population-based prospective cohort study. Am J Resp Crit Care Med 188(7):813–819

    Article  Google Scholar 

  • Pfeifer H, Beatrizotti G, Berthoud J, De Rossa M, Girardet A, Jäggli M, Schlegel C (2002) Natural arsenic-contamination of surface and ground waters in Southern Switzerland. Bulletin Appl Geol 7:83–105

    Google Scholar 

  • Pigna M, Cozzolino V, Giandonato Caporale A, Mora ML, Di Meo V, Jara AA, Violante A (2010) Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. J Soil Sci Plant Nutr 10(4):428–442

    Article  Google Scholar 

  • Pizarro I, Gómez M, Palacios MA, Cámara C (2003) Evaluation of stability of arsenic species in rice. Anal Bioanal Chem 376(1):102–109

    Article  CAS  Google Scholar 

  • Pokhrel GR, Wang KT, Zhuang H, Wu Y, Chen W, Lan Y, Yang G (2020) Effect of selenium in soil on the toxicity and uptake of arsenic in rice plant. Chemosphere 239:124712

    Article  CAS  Google Scholar 

  • Pravalprukskul P, Thazin Aung M, Wichelns D (2018) Arsenic in rice: state of knowledge and perceptions in Cambodia (Stockholm: Stockholm Environment Institute), pp 18

  • Quazi S, Datta R, Sarkar D (2011) Effects of soil types and forms of arsenical pesticide on rice growth and development. Int J of Env Sci Technol 8(3):445–460

    Article  CAS  Google Scholar 

  • Rahaman S, Sinha AC, Mukhopadhyay D (2011) Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). J Environ Sci 23(4):633–639

    Article  CAS  Google Scholar 

  • Rahman MM, Ng JC, Naidu R (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31(1):189–200

    Article  CAS  Google Scholar 

  • Rahman MA, Rahman A, Khan MZK, Renzaho AM (2018) Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: a scoping review. Ecotox Environ Safe 150:335–343

    Article  CAS  Google Scholar 

  • Rasheed H, Kay P, Slack R, Gong YY, Carter A (2017) Human exposure assessment of different arsenic species in household water sources in a high risk arsenic area. Sci Total Environ 584:631–641

    Article  Google Scholar 

  • Rasool A, Farooqi A, Xiao T, Masood S, Kamran MA (2016) Elevated levels of arsenic and trace metals in drinking water of Tehsil Mailsi, Punjab. Pakistan J Geochem Explor 169:89–99

    Article  CAS  Google Scholar 

  • Recio-Vega R, Gonzalez-Cortes T, Olivas-Calderon E, Lantz RC, Gandolfi AJ, Alba CGD (2015) In utero and early childhood exposure to arsenic decreases lung function in children. J Appl Toxicol 35(4):358–366

    Article  CAS  Google Scholar 

  • Rehman ZU, Khan S, Qin K, Brusseau ML, Shah MT, Din I (2016) Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. Sci Total Environ 550:321–329

    Article  CAS  Google Scholar 

  • Rehman U, Khan S, Muhammad S (2019) Ingestion of arsenic-contaminated drinking water leads to health risk and traces in human biomarkers (hair, nails, blood, and urine) Pakistan. Expos Health 12:243–254

    Article  Google Scholar 

  • Reid MC, Asta MP, Falk L, Maguffin SC, Pham VHC, Le HA, Le Vo P (2021) Associations between inorganic arsenic in rice and groundwater arsenic in the mekong delta. Chemosphere 265:129092

    Article  CAS  Google Scholar 

  • Reza AS, Jean J-S, Yang H-J, Lee M-K, Woodall B, Liu C-C, Luo S-D (2010) Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, Northwestern Bangladesh. Water Res 44(6):2021–2037

    Article  Google Scholar 

  • Roper WR, Robarge WP, Osmond DL, Heitman JL (2019) Comparing four methods of measuring soil organic matter in north carolina soils. Soil Sci Soc Am j 83(2):466–474

    Article  CAS  Google Scholar 

  • Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35(3):512–515

    Article  CAS  Google Scholar 

  • Roychowdhury T, Tokunaga H, Uchino T, Ando M (2005) Effect of arsenic-contaminated irrigation water on agricultural land soil and plants in West Bengal. India Chemosphere 58(6):799–810

    Article  CAS  Google Scholar 

  • Samal AC, Bhattacharya P, Biswas P, Maity JP, Bundschuh J, Santra SC (2021) Variety-specific arsenic accumulation in 44 different rice cultivars (O. sativa L.) and human health risks due to co-exposure of arsenic-contaminated rice and drinking water. J Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2020.124804

    Article  Google Scholar 

  • Sanz E, Munoz-Olivas R, Camara C, Sengupta MK, Ahamed S (2007) Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of middle and lower Ganga plain. J Environ Sci Heal A 42(12):1695–1705

    Article  CAS  Google Scholar 

  • Sarwar T, Khan S, Yu X, Amin S, Khan MA, Sarwar A, Nazneen S (2021) Analysis of arsenic concentration and its speciation in rice of different markets of Pakistan and its associated health risk. Environ Technol Innov 21:101252

    Article  CAS  Google Scholar 

  • Sathe SS, Mahanta C (2019) Groundwater flow and arsenic contamination transport modeling for a multi aquifer terrain: assessment and mitigation strategies. J Environ Manage 231:166–181

    Article  CAS  Google Scholar 

  • Schoof R, Yost L, Eickhoff J, Crecelius E, Cragin D, Meacher D, Menzel D (1999) A market basket survey of inorganic arsenic in food. Food Chem Toxicol 37(8):839–846

    Article  CAS  Google Scholar 

  • Shakoor MB, Bibi I, Niazi NK, Shahid M, Nawaz MF, Farooqi A, Lüttge A (2018) The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere 199:737–746

    Article  CAS  Google Scholar 

  • Sharma S, Kaur I, Nagpal AK (2017) Assessment of arsenic content in soil, rice grains and groundwater and associated health risks in human population from Ropar wetland, India, and its vicinity. Environ Sci Pollut Res 24(23):18836–18848

    Article  CAS  Google Scholar 

  • Shen H, Xu W, Zhang J, Chen M, Martin FL, Xia Y, Zhu Y-G (2013) Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a Han Chinese population. Env Sci Technol 47(15):8843–8851

    CAS  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in arabidopsis: Pht1; 1 and Pht1; 4 play a major role in phosphate acquisition from both low-and high-phosphate environments. Plant J 39(4):629–642

    Article  CAS  Google Scholar 

  • Signes-Pastor A, Burló F, Mitra K, Carbonell-Barrachina A (2007) Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma 137(3–4):504–510

    Article  CAS  Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Smith MT (1992) Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259–267

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM (2002) Chemistry of inorganic arsenic in soils: II effect of phosphorus, sodium, and calcium on arsenic sorption. J Envion Qual 31(2):557–563

    CAS  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409(12):2430–2442

    Article  CAS  Google Scholar 

  • Srivastava RK, Li C, Chaudhary SC, Ballestas ME, Elmets CA, Robbins DJ, Bickers DR (2013) Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption. Toxicol Appl Pharmacol 272(3):879–887

    Article  CAS  Google Scholar 

  • Stetson SJ, Lawrence C, Whitcomb S, Kanagy C (2021) Determination of four arsenic species in environmental water samples by liquid chromatography-inductively coupled plasma-tandem mass spectrometry. MethodsX 8:101183

    Article  CAS  Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328(1–2):27–34

    Article  CAS  Google Scholar 

  • Sun G-X, Williams PN, Zhu Y-G, Deacon C, Carey A-M, Raab A, Meharg AA (2009) Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environ Int 35(3):473–475

    Article  CAS  Google Scholar 

  • Syu CH, Lee CH, Jiang PY, Chen MK, Lee DY (2014) Comparison of As sequestration in iron plaque and uptake by different genotypes of rice plants grown in As-contaminated paddy soils. Plant Soil 374(1):411–422

    Article  CAS  Google Scholar 

  • Tabassum RA, Shahid M, Dumat C, Niazi NK, Khalid S, Shah NS, Khalid S (2019) Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source. Environ Sci Pollut Res 26(20):20018–20029

    Article  CAS  Google Scholar 

  • Turpeinen R, Pantsar-Kallio M, Häggblom M, Kairesalo T (1999) Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci Total Environ 236(1–3):173–180. https://doi.org/10.1016/S0048-9697(99)00269-7

    Article  CAS  Google Scholar 

  • Upadhyay MK, Majumdar A, Barla A, Bose S, Srivastava S (2019) An assessment of arsenic hazard in groundwater–soil–rice system in two villages of Nadia District West Bengal, India. Env Geochem Health. https://doi.org/10.1007/s10653-019-00289-4

    Article  Google Scholar 

  • USEPA (United States Environmental Protection Agency) Toxicological review of inorganic arsenic. Draft document. EPA/635/R-10/001. Washington, DC, USA: USEPA; (2010) p. 575

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366(2–3):701–721

    Article  CAS  Google Scholar 

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41(19):6854–6859

    Article  CAS  Google Scholar 

  • WHO EHC 224 Arsenic and arsenic compounds. 2nd ed. 2001, Geneva.

  • Williams PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Zhu YG (2009) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: hunan. China Environ Sci Technol 43(3):637–642

    Article  CAS  Google Scholar 

  • Williams PN, Zhang H, Davison W, Meharg AA, Hossain M, Norton GJ, Islam MR (2011) Organic matter solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Env Sci Technol 45(14):6080–6087

    Article  CAS  Google Scholar 

  • Williams PN, Zhang H, Davison W, Meharg AA, Hossain M, Norton GJ, Islam MR (2011b) Organic matter solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environ Sci Technol 45(14):6080–6087

    Article  CAS  Google Scholar 

  • Wu T-L, Cui X-D, Cui P-X, Ata-Ul-Karim ST, SunQ LC, Wang Y-J (2019) Speciation and location of arsenic and antimony in rice samples around antimony mining area. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.06.083

    Article  Google Scholar 

  • Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83(7):925–932

    Article  CAS  Google Scholar 

  • Yim SR, Park GY, Lee KW, Chung MS, Shim SM (2017) Determination of total arsenic content and arsenic speciation in different types of rice. Food Sci Biotechnol 26(1):293–298

    Article  CAS  Google Scholar 

  • Zavala YJ, Duxbury JM (2008) Arsenic in rice: I. estimating normal levels of total arsenic in rice grain. Env Sci Technol 42(10):3856–3860

    Article  CAS  Google Scholar 

  • Zhang X, Zhong T, Chen D, Cheng M, Liu L, Zhang X, Li X (2016) Assessment of arsenic (As) occurrence in arable soil and its related health risk in China. Env Geochem Health 38(3):691–702

    Article  Google Scholar 

  • Zhao F-J, Zhu Y-G, Meharg AA (2013) Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Env Sci Technol 47(9):3957–3966

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181(4):777–794

    Article  CAS  Google Scholar 

  • Zheng N, Wang QC, Zhang XW, Zheng DM, Zhang ZS, Zhang SQ (2007) Population health risk due to dietary intake of heavy metals in the industrial area of Huludao City. China Sci Tot Environ 387:96–104

    Article  CAS  Google Scholar 

  • Zhao FJ, Zhu YG, Meharg AA (2013b) Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol 47(9):3957–3966

    Article  CAS  Google Scholar 

  • Zhu Y-G, Sun G-X, Lei M, Teng M, Liu Y-X, Chen N-C, Raab A (2008) High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Env Sci Technol 42(13):5008–5013

    Article  CAS  Google Scholar 

  • Zhu Y-G, Xue X-M, Kappler A, Rosen BP, Meharg AA (2017) Linking genes to microbial biogeochemical cycling: lessons from arsenic. Environ Sci Technol 51:7326–7339

    Article  CAS  Google Scholar 

  • Zhuang P, Zhang C, Li Y, Zou B, Mo H, Wu K, Li Z (2016) Assessment of influences of cooking on cadmium and arsenic bioaccessibility in rice, using an in vitro physiologically-based extraction test. Food Chem 213:206–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Higher Education Commission (HEC) of Pakistan and Pakistan Science Foundation (PSF) project no. PSF/NSLP/KP AWKUM (827) are highly acknowledged for financial support. While The authors acknowledge the financial support provided by Innovation Platform for Academicians of Hainan Province (YSPTZX202205) and Research Initiation Fund of Hainan University (KYQD(ZR)20032).

Funding

This study was funded by Higher Education Commission of Pakistan, Pakistan Science Foundation, Innovation Platform for Academicians of Hainan Province and Hainan University. China.

Author information

Authors and Affiliations

Authors

Contributions

TS: Data collection, writing, methodology. SK & HQ: Supervision, editing, conceptualization. JN, IH & SM: Reviewing and Editing. SA, AS: data collection. JK: software, visualization.

Corresponding authors

Correspondence to Sardar Khan, Javed Nawab or Qing Huang.

Ethics declarations

Conflicts of interest

No conflict of interest.

Ethical Approval

NA.

Consent to Participate

NA

Consent for Publication

NA

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 379 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarwar, T., Khan, S., Nawab, J. et al. Arsenic Speciation in Rice, Mechanisms and Associated Health Risk Through Rice Consumption in Various Districts of Khyber Pakhtunkhwa, Pakistan. Expo Health 15, 299–313 (2023). https://doi.org/10.1007/s12403-022-00491-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-022-00491-3

Keywords

Navigation