Skip to main content

Advertisement

Log in

Health risk assessment of arsenic and other potentially toxic elements in drinking water from an industrial zone of Gujrat, Pakistan: a case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Present study aimed to provide a baseline data on arsenic (As) and other potentially toxic element (PTEs; Cd, Cr, Cu, Ni, and Pb) contamination in groundwater and soils (surface and sub-surface) from an industrial area of district Gujrat, Pakistan. Statistical parameters, principal component analysis-multiple linear regression (PCA-MLR), and health risk assessment model were used to elaborate the interrelations, source contributor, and associated health risks. This study revealed that the concentrations of Cd, Cr, Cu, and Pb in drinking water were within the permissible limits of the World Health Organization (WHO). However, As and Ni concentrations exceeded the WHO limits of 10 μg/L for As and 0.07 mg/L for Ni. In soils, the concentration of Cr was within permissible limits, whereas As, Cd, Cu, Ni, and Pb exceeded the prescribed values. Solid waste and industrial effluents from the area also contained high levels of As, Cd, Cr, Cu, Ni, and Pb. Calculated health index of As and other PTEs for industrial site and control area was less than 1 which indicated that the groundwater was assumed to be safe for drinking. High contamination of As (15 mg/kg) and other PTEs (Pb was 978, Cr 51, Cu 111, Cd 68, and Ni was 90 mg/kg, respectively) in upper soil could be due to the discharge of industrial effluent prior to the treatment, which signifies the industrial contribution towards As and heavy metal contamination. It can be concluded that critical examination of soil profile affinity to the respective, industrial waste pollutants can reduce the health risks to the local community. This trend not only reveals the geochemistry of the area but also useful for developing a link to access health risk and associated remediation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N. K., Khan, M. I., & Hussain, M. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15(1), 59.

    Google Scholar 

  • Ahmed, G., Miah, M. A., Anawar, H. M., Chowdhury, D. A., & Ahmad, J. U. (2012). Influence of multi-industrial activities on trace metal contamination: an approach towards surface water body in the vicinity of Dhaka Export Processing Zone (DEPZ). Environmental Monitoring and Assessment, 184(7), 4181–4190.

    CAS  Google Scholar 

  • Ajmal, M., Mohammad, A., Yousuf, R., & Ahmad, A. (1998). Adsorption behaviour of cadmium, zinc, nickel and lead from aqueous solutions by Mangifera indica seed shell. Indian Journal of Environmental Health, 40(1), 15–26.

    CAS  Google Scholar 

  • Alam, N., & Olsthoorn, T. N. (2014). Punjab scavenger wells for sustainable additional groundwater irrigation. Agricultural Water Management, 138, 55–67.

    Google Scholar 

  • Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., & Kato, K. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. Journal of Geochemical Exploration, 77(2), 109–131.

    CAS  Google Scholar 

  • APHA. (1992). American Public Health Association. Standards methods for the examination of water and wastewater. 18th Ed. Washington, D.C.

  • Azizullah, A., Khattak, M. N. K., Richter, P., & Hader, D. P. (2011). Water pollution in Pakistan and its impact on public health—a review. Environment International, 37(2), 479–497.

    CAS  Google Scholar 

  • Bhattacharjee, S., Mitra, P., & Ghosh, S. K. (2014). Spatial interpolation to predict missing attributes in GIS using semantic kriging. IEEE Transactions on Geoscience and Remote Sensing, 52(8), 4771–4780.

    Google Scholar 

  • Brown, K. G., & Ross, G. L. (2002). Arsenic, drinking water, and health: a position paper of the American Council on Science and Health. Regulatory Toxicology and Pharmacology, 36(2), 162–174.

    CAS  Google Scholar 

  • Burgess, W. G., & Pinto, L. (2005). Preliminary observations on the release of arsenic to groundwater in the presence of hydrocarbon contaminants in UK aquifers. Mineralogical Magazine, 69(5), 887–896.

    CAS  Google Scholar 

  • Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., Zhu, Y. G., et al. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195.

    CAS  Google Scholar 

  • Chanpiwat, P., Sthiannopkao, S., Cho, K. H., Kim, K.-W., San, V., Suvanthong, B., & Vongthavady, C. (2011). Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR. Environmental Pollution, 159(2), 567–576.

    CAS  Google Scholar 

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., Fan, K. K., Yu, K., Wu, X., & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542–551.

    CAS  Google Scholar 

  • Chen, B. D., Zhu, Y. G., & Smith, F. A. (2006). Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere, 62(9), 1464–1473.

    CAS  Google Scholar 

  • Coudert, L., Blais, J. F., Mercier, G., Cooper, P., Gastonguay, L., Morris, P., Reynier, N., et al. (2013). Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process. Journal of Hazardous Materials, 261, 277–285.

    CAS  Google Scholar 

  • Del Mastro, A. M., Pereyra, M., Londonio, A., Pereyra, V., Rebagliati, R. J., Dawidowski, L., Smichowski, P., et al. (2014). Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina. Atmospheric Environment, 98, 299–307.

    Google Scholar 

  • Essa, M. A., & Farragallah, M. E. A. A. (2006). Clay minerals and their interactions with heavy metals and microbes of soils irrigated by various water resources at Assiut, Egypt. Assiut University Bulletin for Environmental Researches, 9(2), 73–90.

    Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324.

    CAS  Google Scholar 

  • Farooqi, A. (2015). Status of As and F− groundwater and soil pollution in Pakistan. In Arsenic and fluoride contamination (pp. 21–33). New Delhi: Springer.

    Google Scholar 

  • Farooqi, A., Masuda, H., Firdous, N., 2007. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environmental Pollution 145, 839–849.

  • Gee, G. W., & Or, D. (2002). 2.4 Particle-size analysis. Methods of soil analysis. Utah State University Logan, Utah, Part 4(598), 255–293.

    Google Scholar 

  • Gilani, S. R., Mahmood, Z., Hussain, M., Baig, Y., Abbas, Z., & Batool, S. (2013). A study of drinking water of industrial area of Sheikhupura with special concern to arsenic, manganese and chromium. Pakistan Journal of Engineering, & Applied Science, 13, 118–126.

    Google Scholar 

  • Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Canniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69(1), 54–60.

    CAS  Google Scholar 

  • Henden, E., Cataloglu, R., & Aksuner, N. (2011). Determination of arsenic leaching from glazed and non-glazed Turkish traditional earthenware. Science of the Total Environment, 409(15), 2993–2996.

    CAS  Google Scholar 

  • Ilyas, A., & Sarwar, T. (2003). Study of trace elements in drinking water in the vicinity of Palosi drain, Peshawar. Pakistan Journal of Biological Sciences, 6(1), 86–91.

    Google Scholar 

  • Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., & Lloyd, J. R. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68–71.

    CAS  Google Scholar 

  • Jadeja, R. N., & Tewari, A. (2007). Effect of soda ash industry effluent on bioaccumulation of metals by seaweeds of coastal region of Gujarat, India. Journal of Hazardous Materials, 147(1), 148–154.

    CAS  Google Scholar 

  • Janin, A., Coudert, L., Riche, P., Mercier, G., Cooper, P., & Blais, J. F. (2011). Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal. Journal of Hazardous Materials, 186(2), 1880–1887.

    CAS  Google Scholar 

  • Kabir, E., Ray, S., Kim, K. H., Yoon, H. O., Jeon, E. C., Kim, Y. S., Brown, R. J., et al. (2012). Current status of trace metal pollution in soils affected by industrial activities. The Scientific World Journal, 2012, 1–18.

    Google Scholar 

  • Kisku, G. C., Barman, S. C., & Bhargava, S. K. (2000). Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water, Air, and Soil Pollution, 120(1–2), 121–137.

    CAS  Google Scholar 

  • Lamm, S. H., Robbins, S., Chen, R., Lu, J., Goodrich, B., & Feinleib, M. (2014). Discontinuity in the cancer slope factor as it passes from high to low exposure levels–arsenic in the BFD-endemic area. Toxicology, 326, 25–35.

    CAS  Google Scholar 

  • Lee, S. W., Lee, B. T., Kim, J. Y., Kim, K. W., & Lee, J. S. (2006). Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea. Environmental Monitoring and Assessment, 119(1–3), 233–244.

    CAS  Google Scholar 

  • Lokeshwari, H., & Chandrappa, G. T. (2006). Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. Current Science, 622–627.

  • Lombi, E., Sletten, R. S., & Wenzel, W. W. (2000). Sequentially extracted arsenic from different size fractions of contaminated soils. Water, Air, and Soil Pollution, 124(3–4), 319–332.

    CAS  Google Scholar 

  • Lyon F. (2014) IARC monographs on the evaluation of carcinogenic risks to humans. World health organization, International agency for research on cancer. availble at publication@iarc.fr.

  • Malik, A., & Jaiswal, R. (2000). Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World Journal of Microbiology and Biotechnology, 16(2), 177–182.

    CAS  Google Scholar 

  • Manzoor, S., Shah, M. H., Shaheen, N., Khalique, A., & Jaffar, M. (2006). Multivariate analysis of trace metals in textile effluents in relation to soil and groundwater. Journal of Hazardous Materials, 137(1), 31–37.

    CAS  Google Scholar 

  • Mazumder, D. N. G., Haque, R., Ghosh, N., De Binay, K., Santra, A., Chakraborti, D., & Smith, A. H. (2000). Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India. International Journal of Epidemiology, 29(6), 1047–1052.

    CAS  Google Scholar 

  • Moor, C., Lymberopoulou, T., & Dietrich, V. J. (2001). Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS. Microchimica Acta, 136(3–4), 123–128.

    CAS  Google Scholar 

  • Muhammad, S., Shah, M. T., & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98(2), 334–343.

    CAS  Google Scholar 

  • Mukesh, M., & Zeenat, K. (2001). Content of metals in drinking water of Hyderabad. Pakistan Journal of Analytical Chemistry, 2, 2–34.

    Google Scholar 

  • Mukherjee, S. C., Rahman, M. M., Chowdhury, U. K., Sengupta, M. K., Lodh, D., Chanda, C. R., Chakraborti, D., et al. (2003). Neuropathy in arsenic toxicity from groundwater arsenic contamination in West Bengal, India. Journal of Environmental Science and Health, Part A, 38(1), 165–183.

    Google Scholar 

  • Muwanga, A., & Barifaijo, E. (2006). Impact of industrial activities on heavy metal loading and their physico-chemical effects on wetlands of Lake Victoria basin (Uganda). African Journal of Science and Technology, 7(1).

  • Nickson, R., McArthur, J., Shrestha, B., Kyaw-Myint, T., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry, 20(1), 55–68.

    CAS  Google Scholar 

  • Noori, R., Sabahi, M. S., Karbassi, A. R., Baghvand, A., & Zadeh, H. T. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination, 260(1), 129–136.

    CAS  Google Scholar 

  • Ozturk, D., & Kilic, F. (2016). Geostatistical approach for spatial interpolation of meteorological data. Anais da Academia Brasileira de Ciências, 88(4), 2121–2136.

    Google Scholar 

  • Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41(8–9), 1665–1677.

    CAS  Google Scholar 

  • Phan, K., Sthiannopkao, S., Kim, K. W., Wong, M. H., Sao, V., Hashim, J. H., Mohamed Yasin, M. S., & Aljunid, S. M. (2010). Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Research, 44(19), 5777–5788.

    CAS  Google Scholar 

  • Qazi, M. A., Khattak, M. A., Khan, M. S. A., Chaudhry, M. N., Mahmood, K., Akhter, B., Ali, U. A., et al. (2016). Spatial distribution of heavy metals in ground water of Sheikhupura district Punjab, Pakistan. Journal of Agricultural Research (Pakistan).

  • Qurat-ul-Ain, Farooqi, A., Sultana, J., & Masood, N. (2017). Arsenic and fluoride co-contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: spatial trends, sources and human health implications. Toxicology and Industrial Health, 33(8), 655–672.

    Google Scholar 

  • Rahman, S. H., Khanam, D., Adyel, T. M., Islam, M. S., Ahsan, M. A., & Akbor, M. A. (2012). Assessment of heavy metal contamination of agricultural soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: implication of seasonal variation and indices. Applied Sciences, 2(3), 584–601.

    CAS  Google Scholar 

  • Rasool, A., Farooqi, A., Masood, S., & Hussain, K. (2016). Arsenic in groundwater and its health risk assessment in drinking water of Mailsi, Punjab, Pakistan. Human and Ecological Risk Assessment: An International Journal, 22(1), 187–202.

    CAS  Google Scholar 

  • Sappa, G., Ergul, S., & Ferranti, F. (2014). Geochemical modeling and multivariate statistical evaluation of trace elements in arsenic contaminated groundwater systems of Viterbo Area,(Central Italy). SpringerPlus, 3(1), 237.

    Google Scholar 

  • Sarkar, D., Makris, K. C., Parra-Noonan, M. T., & Datta, R. (2007). Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Environment International, 33(2), 164–169.

    CAS  Google Scholar 

  • Satarug, S., Vesey, D. A., & Gobe, G. C. (2017). Current health risk assessment practice for dietary cadmium: data from different countries. Food and Chemical Toxicology, 106, 430–445.

    CAS  Google Scholar 

  • Sekhar, K. C., Chary, N., Kamala, C., Rao, J. V., Balaram, V., & Anjaneyulu, Y. (2003). Risk assessment and pathway study of arsenic in industrially contaminated sites of Hyderabad: a case study. Environment International, 29(5), 601–611.

    Google Scholar 

  • Shahid, M., Khalid, M., Dumat, C., Khalid, S., Niazi, N. K., Imran, M., & Tabassum, R. A. (2017). Arsenic level and risk assessment of groundwater in Vehari, Punjab Province, Pakistan. Exposure and Health, 1–11.

  • Shakoor, M. B., Niazi, N. K., Bibi, I., Rahman, M. M., Naidu, R., Dong, Z., & Arshad, M. (2015). Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. International Journal of Environmental Research and Public Health, 12(10), 12371–12390.

    CAS  Google Scholar 

  • Shakoor, M. B., Bibi, I., Niazi, N. K., Shahid, M., Nawaz, M. F., Farooqi, A., & Lüttge, A. (2018). The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 199, 737–746.

    CAS  Google Scholar 

  • Singh, D., Singh, V., & Agnihotri, A. K. (2013). Study of textile effluent in and around Ludhiana district in Punjab, India. International Journal of Environmental Sciences, 3(4), 1271.

    CAS  Google Scholar 

  • Singh, C. K., Kumar, A., Shashtri, S., Kumar, A., Kumar, P., & Mallick, J. (2017). Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration, 175, 59–71.

    CAS  Google Scholar 

  • Srivastava, P., Singh, B., & Angove, M. (2005). Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290(1), 28–38.

    CAS  Google Scholar 

  • State Environmental Protection Administration of China (SEPAC). (1995) Chinese Environmental Quality Standard for Soils (GB15618-1995). http://www.chinaep.net/hjbiaozhun/hjbz/hjbz017.html.

  • Sultana, J., Farooqi, A., & Ali, U. (2014). Arsenic concentration variability, health risk assessment, and source identification using multivariate analysis in selected villages of public water system, Lahore, Pakistan. Environmental Monitoring and Assessment, 186(2), 1241–1251.

    CAS  Google Scholar 

  • Sun, Y., Sun, G., Xu, Y., Wang, L., Liang, X., & Lin, D. (2013). Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma, 193, 149–155.

    Google Scholar 

  • Tahir, M. W., Kauser, R., Tousif, S., Nazir, M. A., Arshad, A., & Butt, A. (2011). Crime trends among youth (15-29) in Gujrat, Pakistan. African Journal of Law and Criminology, 1(2), 39–49.

    Google Scholar 

  • USEPA (United State Environmental Protection Agency). (2005). Guidelines for carcinogenic risk assessment. United States Environmental Protection Agency. Washington, DC: Risk Assessment Forum.

  • Valdman, E., Erijman, L., Pessoa, F. L. P., & Leite, S. G. F. (2001). Continuous biosorption of cu and Zn by immobilized waste biomass Sargassum sp. Process Biochemistry, 36(8), 869–873.

    CAS  Google Scholar 

  • Villalba, I. M., Lacasaña, M., Rodríguez-Barranco, M., Hernández, A. F., Gonzalez-Alzaga, B., Aguilar-Garduño, C., & Gil, F. (2015). Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. Chemosphere, 124, 83–91.

    Google Scholar 

  • Wang, S. W., Lin, K. H., Hsueh, Y. M., & Liu, C. W. (2007). Arsenic distribution in a tilapia (Oreochromis mossambicus) water-sediment aquacultural ecosystem in blackfoot disease hyperendemic areas. Bulletin of Environmental Contamination and Toxicology, 78(2), 147–151.

    CAS  Google Scholar 

  • Wasserman, G. A., Liu, X., Parvez, F., Factor-Litvak, P., Ahsan, H., Levy, D., Siddique, A. B., et al. (2011). Arsenic and manganese exposure and children’s intellectual function. Neurotoxicology, 32(4), 450–457.

    CAS  Google Scholar 

  • Water, O. (2012). Edition of the drinking water standards and health advisories. EP Agency (ed.). EPA 822-S-12-001.

  • WHO G. (2011). Guidelines for drinking-water quality: Geneva: World Health Organization. 216, pp. 303–4.

  • Yaylalı-Abanuz, G. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99(1), 82–92.

    Google Scholar 

  • Zeiner, M., Rezi, I., & Steffan, I. (2007). Analytical methods for the determination of heavy metals in the textile industry. Kemija u Industriji, 56(11), 587–559.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abida Farooqi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, N., Farooqi, A. & Zafar, M.I. Health risk assessment of arsenic and other potentially toxic elements in drinking water from an industrial zone of Gujrat, Pakistan: a case study. Environ Monit Assess 191, 95 (2019). https://doi.org/10.1007/s10661-019-7223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7223-8

Keywords

Navigation