Skip to main content
Log in

The Chitin-Induced Chimeric LYK4-ER Gene Improves the Heat Tolerance of Arabidopsis at the Seedling Stage

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Due to global warming, high temperature has become the main abiotic stress affecting plant growth worldwide. LysM-containing receptor-like kinase 4 (LYK4) is the receptor for chitin, and ERECTA(ER) is a key factor in plant tolerance to high temperature. In this study, we constructed a chitin-induced chimeric LYK4-ER gene, in which the extracellular region and transmembrane domain of the LYK4 gene are fused with the intracellular region of the ER gene. Colony PCR, RT-PCR and western blot analyses of LYK4-ER transcription in plants, confirmed that the LYK4-ER gene was successfully constructed and transferred into Arabidopsis. The LYK4-ER gene localized to the cytomembrane and cytoplasm in vivo because of the binding properties of the transmembrane domain of the LYK4-ER gene to the cell membrane. The transgenic plants showed a higher germination rate and germination index as well as a shorter mean germination time than the wild-type plants, indicating that the LYK4-ER gene increases the heat tolerance of Arabidopsis. The lower H2O2 content and relative electrolytic leakage of the transgenic plants showed that the status of these plants under heat stress was improved. UPLC-MS/MS was used to analyze the phytohormones content, which suggested that the transgenic plants exhibited improved heat tolerance through jasmonic acid signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5
Fig. 6 

Similar content being viewed by others

References

  • Adegbuyi E, Cooper SR, Don R (1981) Osmotic priming of some herbage grass seed using polyethylene glycol (PEG). Seed Sci Technol 9(3):867–878

    CAS  Google Scholar 

  • Anastasis C, Panagiota F, Manganaris GA et al (2014) Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol 14(1):42–42

    Article  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (aba) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:0–59

    Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46(1):189–214

    Article  CAS  Google Scholar 

  • Davies PJ (2004) Plant hormones: biosynthesis, signal transduction, action [M]. Kluwar Academic Publishers, Norwell, pp 1–15

    Google Scholar 

  • Guan YJ, Hu J, Wang XJ et al (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B (Biomedicine & Biotechnology) 10(6):427–433

    Article  CAS  Google Scholar 

  • Guo M, Liu JH, Ma X et al (2016) The Plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7(273):114

    PubMed  PubMed Central  Google Scholar 

  • Kanchan V, Neha U, Nitin K et al (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 08:1–12

    CAS  Google Scholar 

  • Khan AA (1992) Preplant physiological seed conditioning. Hortic Rev 13:131–181

    Google Scholar 

  • Khedia J, Agarwal P, Agarwal PK (2019) Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants. Biotech 9(11):395

    Google Scholar 

  • Li ZG, Yang SZ, Long WB et al (2013) Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ 36(8):1564–1572

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Liu Z, Song C et al (2012) Chitin-induced dimerization activates a plant immune receptor. Science 336(6085):1160–1164

    Article  CAS  PubMed  Google Scholar 

  • Lizárraga-Paulín EG, Torres-Pacheco I, Moreno-Martínez E et al (2011) Chitosan application in Maize (Zea mays) to counteract the effects of abiotic stress at seedling level. Afr J Biotech 10(34):6439–6446

    Google Scholar 

  • Manvi S, Ashverya L (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci 6:1–10

    Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436(7052):866–870

    Article  CAS  PubMed  Google Scholar 

  • Miya A, Albert P, Shinya T et al (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104(49):19613–19618

    Article  CAS  PubMed  Google Scholar 

  • Narusaka Y, Shinya T, Narusaka M et al (2013) Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis. Plant Signal Behav 8(9):e25345

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng S, Huang J, Sheehy JE et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101(27):9971–9975

    Article  CAS  PubMed  Google Scholar 

  • Petutschnig EK, Jones AME, Serazetdinova L et al (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285(37):28902–28911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Hai H (2004) ERECTA is required for protection against heat-stress in the AS1/AS2 pathway to regulate adaxial-abaxial leaf polarity in Arabidopsis. Planta 219(2):270

    Article  CAS  PubMed  Google Scholar 

  • Qu XY, Zhao Z, Tian ZX (2017) ERECTA regulates cell elongation by activating auxin biosynthesis in Arabidopsis thaliana. Front Plant Sci 8:1688

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramonell K, Berrocal-Lobo M, Koh S et al (2005) Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol 138(2):1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan SL, Xue QZ (2002) Effects of chitosan coating on seed germination and salt-tolerance of seedlings in hybrid rice (Oryza sativa L.). Acta Agronom Sin 28(6):803–808

    Google Scholar 

  • Sagor GH, Berberich T, Takahashi Y et al (2013) The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgen Res 22(3):595

    Article  CAS  Google Scholar 

  • Shen H, Zhong X, Zhao F et al (2015) Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol 33(9):996

    Article  CAS  PubMed  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant [J]. Physiol Mol Plant Pathol 59(5):223–233

    Article  CAS  Google Scholar 

  • Solomon S (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, climate change 2007: the physical science basis. Cambridge University Press, New York, pp 159–254

    Google Scholar 

  • Sonna LA, Fujita J, Gaffin SL et al (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92(4):1725–1742

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Tanaka K, Zhang XC et al (2012) LYK4, a LysM receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol 160(1):396–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Schurr U, Davies et al (1987) Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J Exp Bot 38(7):1174–1181

    Article  CAS  Google Scholar 

  • Zhang Y, Mian MA, Chekhovskiy K et al (2005) Differential gene expression in Festuca under heat stress conditions. J Exp Bot 56(413):897–907

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqing Zhang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Xia, W., Song, J. et al. The Chitin-Induced Chimeric LYK4-ER Gene Improves the Heat Tolerance of Arabidopsis at the Seedling Stage. J. Plant Biol. 63, 279–288 (2020). https://doi.org/10.1007/s12374-020-09249-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09249-3

Keywords

Navigation