Skip to main content
Log in

Valorization of Ethiopian Sugarcane Bagasse to Assess its Suitability for Pulp and Paper Production

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

This research provides an assessment of the Ethiopian sugarcane bagasse (ESCB) and examines its suitability for the pulp and paper production. The study is focused toward carrying out the physical fractionation pretreatment on the ESCB aiming at the reduction of its lignin, extractive, silica and ash content. A measurement on the chemical composition was carried out to determine the cellulose, lignin, holocellulose, ash and silica content. Furthermore, cold and hot water solubility, 1% NaOH solubility and the presence of ethanol–toluene extractives were measured. Chemical composition analysis of sugarcane bagasse revealed a good level of cellulose (≈ 50%) and Klason lignin content (< 30%). The measurement of the ESCB fiber dimensions (fiber length of 1.86 mm, fiber diameter of 30.02 µm, cell-wall thickness of 2.53 µm) advocates its application in the paper and pulp industry. The physical fractionation pretreatment had a significant effect on reducing the lignin, extractive, ash and silica content in the ESCB, as could be evidenced from the FTIR analysis. These results demonstrate the efficacy of Ethiopian sugarcane bagasse and validate it as a suitable raw material for pulp and paper industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agnihotri, S., D. Dutt, and C.H. Tyagi. 2010. Complete characterization of bagasse of early species of Saccharum officinerum-CO 89003 for pulp and paper making. BioResources 5: 1197–1214.

    CAS  Google Scholar 

  • Alila, S., I. Besbes, M. Rei, P. Mutjé, and S. Boufi. 2013. Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Industrial Crops and Products 41: 250–259.

    Article  CAS  Google Scholar 

  • Andrade, M.F., and J.L. Colodette. 2014. Dissolving pulp production from sugar cane bagasse. Industrial Crops and Products 52: 58–64.

    Article  CAS  Google Scholar 

  • Anuradha Jabasingh, S. 2011. Response surface methodology for the evaluation and comparison of cellulase production by Aspergillus nidulans SU04 and Aspergillus nidulans MTCC344 cultivated on pretreated sugarcane bagasse. Chemical and Biochemical Engineering Quarterly 25: 501–511.

    Google Scholar 

  • Anuradha Jabasingh, S., Habtamu B, and Y. Abubeker. 2018. Iron oxide induced bagasse nanoparticles for the sequestration of Cr6+ ions from tannery effluent using a modified batch reactor. Journal of Applied Polymer Science 135: 46683.

    Article  Google Scholar 

  • Anuradha Jabasingh, S., and C. Valli Nachiyar. 2012. Optimization of cellulasesynthesis by RSM and evaluation of ethanol production from enzymatically hydrolyzed sugarcane bagasse using Saccharomyces cerevisiae. Journal of Scientific and Industrial Research 71: 353–359.

    Google Scholar 

  • Anuradha Jabasingh, S., and C. Valli Nachiyar. 2011. Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using Response surface methodology. Industrial Crops and Products 34(3): 1564–1571.

    Article  CAS  Google Scholar 

  • Anuradha Jabasingh, S., D. Lalith, M. Arun Prabhu, Y. Abubekker, and Z. Taye. 2016. Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer. Carbhohydrate Polymers 136: 700–709.

    Article  Google Scholar 

  • Ayele, N., A. Getaneh, T. Negi, and Z. Dilnesaw. 2014. Effect of planting density on yield and yield components of sugarcane at Wonji-Shoa. Scholarly Journal of Agricultural Science 4(12): 583–586.

    Google Scholar 

  • Birhanu, A. 2014. Environmental degradation and management in Ethiopian highlands. International Journal of Environmental Protection and Policy 2: 24–34.

    Article  Google Scholar 

  • Camarero, S., O. García, T. Vidal, J. Colom, J.C. Del Río, A. Gutiérrez, and Á.T. Martínez. 2004. Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme and Microbial Technology 35: 113–120.

    Article  CAS  Google Scholar 

  • Cao, S., L. Lin, F. Huang, L. Huang, and L. Chen. 2014. Morphological and chemical characterization of green bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for dissolving pulp production. BioResources 9: 4528–4539.

    Article  Google Scholar 

  • Caparrós, S., M.J. Díaz, J. Ariza, F. López, and L. Jiménez. 2008. New perspectives for Paulownia fortunei L. valorisation of the autohydrolysis and pulping processes. Bioresource Technology 99: 741–749.

    Article  Google Scholar 

  • Chen, H., C. Ferrari, M. Angiuli, J. Yao, C. Raspi, and E. Bramanti. 2010. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydrate Polymers 82: 772–778.

    Article  CAS  Google Scholar 

  • Hamzeh, Y., A. Ashori, Z. Khorasani, A. Abdulkhani, and A. Abyaz. 2013. Pre-extraction of hemicelluloses from bagasse fibers: Effects of dry-strength additives on paper properties. Industrial Crops and Products 43: 365–371.

    Article  CAS  Google Scholar 

  • Hemmasi, A.H., A. Samariha, A. Tabei, M. Nemati, and A. Khakifirooz. 2011. Study of morphological and chemical composition of fibers from iranian sugarcane bagasse. American-Eurasian Journal of Agricultural and Environmental Sciences 11: 478–481.

    CAS  Google Scholar 

  • Iskalieva, A., B. Mbouyem, P.R. Gogate, M. Horvath, P.G. Horvath, and L. Csoka. 2012. Ultrasonics sonochemistry cavitation assisted delignification of wheat straw: A review. Ultrasonics Sonochemistry 19: 984–993.

    Article  CAS  Google Scholar 

  • Jimenez, L., A. Rodriguez, P. Antonio, A. Moral, and L. Serrano. 2008. Alternative raw materials and pulping process using clean technologies. Industrial Crops and Products 28: 11–16.

    Article  CAS  Google Scholar 

  • Kaur, D., N. Kant, and R. Kumar. 2017. Prospects of rice straw as a raw material for paper making. Waste Management 60: 127–139.

    Article  CAS  Google Scholar 

  • Khakifirooz, A., F. Ravanbakhsh, A. Samariha, and M. Kiaei. 2013. Investigating the possibility of chemi-mechanical pulping of bagasse. BioResources 8: 21–30.

    Google Scholar 

  • Kiaei, M., M. Tajik, and R. Vaysi. 2014. Chemical and biometrical properties of plum wood and its application in pulp and paper production. Maderas: Science and Technology 16: 313–322.

    CAS  Google Scholar 

  • Kissinger, M., J. Fix, and W.E. Rees. 2006. Wood and non-wood pulp production: Comparative ecological footprinting on the Canadian prairies. Ecological Economics 62: 552–558.

    Article  Google Scholar 

  • Lei, Y., S. Liu, J. Li, and R. Sun. 2010. Effect of hot-water extraction on alkaline pulping of bagasse. Biotechnology Advances 28: 609–612.

    Article  CAS  Google Scholar 

  • Mekonnen, T., M. Diro, M. Sharma, and T. Negi. 2014. Protocol optimization for in vitro mass propagation of two sugarcane (Saccharum officinarum L.) clones grown in Ethiopia. African Journal of Biotechnology 13: 1358–1368.

    Article  Google Scholar 

  • Mercy, O.B., F.J. Adeola, O.A. Olajide, A. Babatunde, and F. James. 2017. Evaluation of fiber characteristics of Ricinodedron Heudelotii (Baill, Pierre Ex Pax) for pulp and paper making. International Journal of Science and Technology 6: 634–641.

    Google Scholar 

  • Mesfin, B., S. Anuradha Jabasingh, and K. Zebene. 2017. Expanding sustenance in Ethiopia based on renewable energy resources-A comprehensive review. Renewable and Sustainable Energy Reviews 75: 1035–1045.

    Article  Google Scholar 

  • Miranda, I., J. Gominho, and H. Pereira. 2012. Incorporation of bark and tops in Eucalyptus globulus wood pulping. BioResources 7: 4350–4361.

    Google Scholar 

  • Mohieldin, S.D. 2014. Pretreatment approaches in non-wood plants for pulp and paper production: A review. Forest Products and Industries 3: 84–88.

    CAS  Google Scholar 

  • Poletto, M., A.J. Zattera, and R.M.C. Santana. 2012. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science 126: 336–343.

    Article  Google Scholar 

  • Przybysz, K., E. Malachowska, D. Martyniak, P. Boruszewski, J. Howska, H. Kalinowska, and P. Przybysz. 2018. Yield of pulp, dimensional properties of fibers, and properties of paper produced from fast growing trees and grasses. BioResources 13: 1372–1387.

    Article  CAS  Google Scholar 

  • Rodrıguez, A., A. Moral, L. Serrano, J. Labidi, and L. Jimenez. 2008. Rice straw pulp obtained by using various methods. Bioresource Technology 99: 2881–2886.

    Article  Google Scholar 

  • Sable, I., U. Grinfelds, A. Jansons, L. Vikele, I. Irbe, A. Verovkins, and A. Treimanis. 2012. Comparison of the properties of wood and pulp fibers from lodgepole pine (Pinus contorta) and Scots pine (Pinus sylvestris). BioResources 7: 1771–1783.

    Article  Google Scholar 

  • Samariha, A., and A. Khakifirooz. 2011. Application of NSSC pulping to sugarcane bagasse. BioResources 6: 3313–3323.

    CAS  Google Scholar 

  • Sugesty, S., T. Kardiansyah, and H. Hardiani. 2015. Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber. Procedia Chemistry 17: 194–199.

    Article  CAS  Google Scholar 

  • Ververis, C., K. Georghiou, N. Christodoulakis, P. Santas, and R. Santas. 2004. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products 19: 245–254.

    Article  CAS  Google Scholar 

  • Vila, C., J. Romero, J.L. Francisco, G. Garrote, and J.C. Parajó. 2011. Extracting value from Eucalyptus wood before kraft pulping: Effects of hemicelluloses solubilization on pulp properties. Bioresource Technology 102: 5251–5254.

    Article  CAS  Google Scholar 

  • Xu, F., J. Yu, T. Tesso, F. Dowell, and D. Wang. 2013. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mine-review. Applied Energy 104: 801–809.

    Article  CAS  Google Scholar 

  • Zhao, X., and D. Liu. 2012. Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility the Formiline process. Bioresource Technology 117: 25–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author is very grateful to Addis Ababa Institute of Technology for financial support, Hawassa Institute of Technology, for the study leave and Wood Technology Research Center of the Ethiopian Environment and Forest Research Institute for the laboratory support. The comments and recommendations of the anonymous reviewers and the Editor-in-Chief, Dr. R.P. Rao, are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anuradha Jabasingh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamaye, M., Kiflie, Z., Feleke, S. et al. Valorization of Ethiopian Sugarcane Bagasse to Assess its Suitability for Pulp and Paper Production. Sugar Tech 21, 995–1002 (2019). https://doi.org/10.1007/s12355-019-00724-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-019-00724-x

Keywords

Navigation