Skip to main content

Advertisement

Log in

Carbon price interaction between allocated permits and generated offsets

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

The Kyoto Protocol established targets for curbing greenhouse gas emissions in order to mitigate climate change, and it introduced two kinds of market-based mechanisms: the emission allowance market and the carbon offset market. We identify stylized features of the two mechanisms with a partial equilibrium model. Our work is the first to derive a closed form solution incorporating most policy instruments, such as abatement and offset usage, and delivery risks in offsets. We show that policy changes will impact one market directly and the other indirectly, generating unequal price responses that affects the spread between the two compliance instruments. We show how the price spread between allowances and offsets is affected by market conditions such as the offset import limit, abatement and offset cost, penalty rate, emission cap, and baseline emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Kossoy et al. (2013)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A CDM project must proceed through the following steps in the project cycle before it is approved to issue CERs: (1) project design, (2) national approval, (3) validation, (4) registration, (5) monitoring, (6) verification, and finally (7) CER issuance. The timeline of the project cycle varies according to each project, but it usually takes more than a year. After the CER issuance is approved by the United Nations Clean Development Mechanism Executive Board, the CERs (primary CERs, specifically) can be sold from a project participant of the CDM project to any buyer. Therefore, buyers are exposed to risk that CER delivery is delayed, or that the CERs never arrive. We model primary CERs to reflect the underlying risk of the CDM project. For instant, pCER were issued from the Cartagena Landfill Gas Capture and Usage Project in Colombia (funded by Germany); the project was registered on Dec. 2012, which eliminates the possibility of delivery risk.

  2. In the EU-ETS, the import limit varies across countries and industries. Offset credits must be used for compliance by the end of each year. There is evidence that the import limit has been binding in the EU-ETS because produced CERs have been larger than the demand by the import limit.

  3. Our model is not a multi-period model such as Yu and Mallory (2015) but a single period model such as Seifert et al. (2008), therefore, we assume that a regulated agent has to pay a penalty only once at the end of the period and that the unsurrendered burden is not transferred because there is no next period. Also, in EU-ETS, paying penalties every year is very rare in practice, because 100% of the allocation in the next year can be fully borrowed for compliance of this year. Therefore, our model sets a penalty only occurs once during a single compliance period.

  4. During the Phase 2 (2008–2012) in the EU-ETS, only 4% of allowances are auctioned off. (Kossoy and Guignon 2012), hence, we ignore this small portion to simply our model.

  5. From the Eq. (3), the expected value of delivered offsets is defined as \(E\left( Q \right) = E_{{}} \left( {\hbox{min} \left[ {q\varepsilon ,L\theta } \right]} \right)\) by considering the uncertainty from the default rate. In addition to this expected Q, we can define the expected penalty for noncompliance also from the uncertainty in emissions from the Eq. (6): \(P_{penalty} \cdot E_{y} \left[ {max\left[ {y - L - u - E\left( Q \right), 0} \right]} \right]\). In Eq. (7), therefore, we use a double expectation operator, \(E_{y} E_{\varepsilon }\), to describe the expected penalty amount under two kinds of uncertainties.

  6. The beta probability density function for realized emissions is f(y; α, β, \(\bar{y}\)) =   \(\frac{{\left( {\bar{y} - y/\bar{y}} \right)^{ - 1 + \beta } \left( {\frac{y}{{\bar{y}}}} \right)^{ - 1 + \alpha } }}{{\mathop \smallint \nolimits_{0}^{1} \left( {1 - z} \right)^{ - 1 + \alpha } z^{ - 1 + \beta } dz}}\):where α and β are shape parameters and \(\bar{y}\) is the parameter that scales realized emissions, y, to the interval [0,1]. The beta probability distribution for the default rate is g(\(\varepsilon ;\upalpha,\upbeta\)) =  \(\frac{{\left( {1 - \varepsilon } \right)^{ - 1 + \beta } \left( \varepsilon \right)^{ - 1 + \alpha } }}{{\mathop \smallint \nolimits_{0}^{1} \left( {1 - z} \right)^{ - 1 + \alpha } z^{ - 1 + \beta } dz}}\).

  7. It is computationally difficult to obtain a closed form solution without any assumed densities. Future studies can try sensitivity analysis on the type of densities with numerical analysis.

  8. There has been much literature about the approximation of probability density functions using the beta distribution (Peizer and Pratt 1968; Alfers and Dinges 1984; Kerman 2011).

  9. See “Appendix 2” to see the shapes of Beta distribution.

  10. \(E\hbox{min} \left\{ {q\varepsilon ,L\theta } \right\} = \mathop \smallint \nolimits_{0}^{{\frac{L\theta }{q}}} q\varepsilon f\left( \varepsilon \right)d\varepsilon + \mathop \smallint \nolimits_{{\frac{L\theta }{q}}}^{1} L\theta f\left( \varepsilon \right)d\varepsilon\) when \(1 > \frac{L\theta }{q} > 0\)

    \(E\hbox{min} \left\{ {q\varepsilon ,L\theta } \right\} = \left( {\frac{k}{k + 1}} \right)q\) when \(1 < \frac{L\theta }{q}\).

  11. Stranlund et al. (2014) departs from previous studies in that their model assumes the enforcement strategies that induce full compliance. However, please note that the agent that monitors the quality of offset credits is not the government but the capped sector. If we model the emission trading scheme from the perspective of a social planner, then we need to consider enforcing the capped sector to comply with the emission regulation. We design the price spread model from the profit maximizing behavior by arbitrage trading between the capped and uncapped parties, which means the government is not involved. Therefore, we model the situation that all noncompliance from the capped party will be penalized without considering the monitoring cost of the government.

  12. There is a limit to use the simplified 2 agent model in which the developer of the project becomes a supplier of the offsets without the broker in the offset market. In reality, although the broker company absorbs the delivery risk, i.e., they guarantee the delivery of the offsets and becomes the main supplier of the offset market, the price spread due to delivery risk still exists because the model limits the supplier to the offset project developer.

  13. The following is an example that the external demand for offsets affects the offset supply in EU-ETS. Since Japan and New Zealand declined to sign up for the second commitment period (CP2) under the Kyoto protocol after 2013, we need to see data before 2012. Regarding CP1 credits during 2008–2012, as estimated in Kossoy and Guignon (2012), Japan has taken about 17.4% in public sector and 18.7% in private sector, which is a big demand portion of international CER market. From 2013, Japan reduced its position following its announcement to support bilateral schemes rather than Kyoto flexibility mechanisms. The portion of offsets that Japan contracted is 13% in pre-2009 market and 24% in post-2009 market, whereas, only 1% in pre-2013 market and 2% of the post-2012 market (Kossoy and Guignon 2012).

  14. The European Commission sets the offset import limits found in Article 11.a of Directive 2009/29/EC Amendment (European Commission). Regulated parties are allowed to use offsets up to a certain percentage of total EUA allocations during the Phase 2 (2008–2012). The amount of offsets allowed varies according to the types of regulated parties.

References

  • Alfers D, Dinges H (1984) A normal approximation for beta and gamma tail probabilities. Probab Theory Relat Fields 65:399–420

    Google Scholar 

  • Barrieu P, Fehr M (2014) Market-consistent modeling for cap-and trade schemes and application to option pricing. Oper Res 62(2):234–249

    Article  Google Scholar 

  • Bushnell J (2011) Adverse selection and emissions offsets. Energy Institute at Haas Working Paper 222

  • Capoor K, Ambrosi P (2008) State and trends of the carbon markets 2008. World Bank, Washington, DC, pp 1–71

  • Capoor K, Ambrosi P (2009) State and trends of the carbon market 2009. World Bank, Washington, DC, pp 1–73

  • Carmona R, Fehr M (2011) The clean development mechanism and price formation for allowances and CERs. Prog Probab 63:341–383

    Google Scholar 

  • Chevallier J (2011) Anticipating correlations between EUAs and CERs: a dynamic conditional correlation GARCH model. Econ Bull Access Econ 31:255–272

    Google Scholar 

  • Cormier A, Bellassen V (2013) The risks of CDM projects: how did only 30% of expected credits come through? Energy Policy 54:173–183

    Article  Google Scholar 

  • Etienne XL, Yu J (2017) Inverse price spread and illiquid trading in Korea-ETS. Carbon Manag 8(3):1–11

    Article  Google Scholar 

  • Hintermann B, Lange A (2013) Learning abatement costs: on the dynamics of the optimal regulation of experience goods. J Environ Econ Manag 66:625–638

    Article  Google Scholar 

  • Huang Y (2011) Assessing and managing regulatory risk in China’s CDM market. University of Oxford, Oxford

    Google Scholar 

  • Kerman J (2011) A closed-form approximation for the median of the beta distribution. http://arxiv.org/abs/1111.0433

  • Kossoy A, Guignon P (2012) State and trends of the carbon market 2012. World Bank, Washington, DC, pp 1–133

  • Kossoy A, Oppermann K, Reddy RC, Bosi M, Boukerche S, Höhne N, Klein N, Gilbert A, Jung M, Borkent B, Lam L, Röser F, Braun N, Hänsel G, Warnecke C (2013) Mapping carbon pricing initiatives: developments and prospects. Worldbank/Ecofys, pp 1–92

  • Mansanet-Bataller M, Chevallier J, Alberola E (2011) EUA and sCER phase II price drivers: unveiling the reasons for the existence of the EUA-sCER spread. Energy Policy 39:1056–1069

    Article  Google Scholar 

  • Mason C, Plantinga A (2011) Contracting for impure public goods: carbon offsets and additionality, NBER Working Papers 16963, National Bureau of Economic Research

  • Montero JP (2000) Optimal design of a phase-in emissions trading program. J Public Econ 75:273–291

    Article  Google Scholar 

  • Nazifi F (2010) The price impacts of linking the European union emissions trading scheme to the clean development mechanism. Environ Econ Policy Stud 12(4):164–186. doi:10.1007/s10018-010-0168-3

    Article  Google Scholar 

  • Nazifi F (2013) Modeling the price spread between the EUA and the CER carbon prices. Energy Policy 56:434–445

    Article  Google Scholar 

  • Parliament of Great Britain: House of Commons (2012) Energy and climate change committee. The EU emissions trading system: 10th report of session 2010–2012

  • Peizer DB, Pratt JW (1968) A normal approximation for binomial, F, beta and other common, related tail probabilities I. J Am Stat Assoc 63:1416–1456

    Google Scholar 

  • Seifert J, Uhrig-Homburg M, Wagner M (2008) Dynamic behavior of CO2 spot prices. J Environ Econ Manag 56(2):180–194

    Article  Google Scholar 

  • Sigman H, Chang HF (2011) The effect of allowing pollution offsets with imperfect enforcement. Am Econ Rev 101(3):268–272

    Article  Google Scholar 

  • Stranlund JK, Moffitt LJ (2014) Enforcement and price controls in emissions trading. J Environ Econ Manag 31:20–38

    Article  Google Scholar 

  • Wara MW, Victor DG (2008) A realistic policy on international carbon offsets. Program on Energy and Sustainable Development, Working Paper #74

  • Yu J, Mallory ML (2015) An optimal hybrid emission control system in a multiple compliance period model. Resour Energy Econ 39:16–28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongmin Yu.

Appendices

Appendix 1: Comparative statics

Here, we apply the implicit function theorem, and apply the envelope conditions to derive solutions for the comparative statics analysis. From the first order conditions in Eqs. (8) and (9), the interior solution \(\left( {u^{*} , q^{*} } \right)\) is defined as below:

$$\frac{\partial TAC\left( u \right)}{\partial u} + \frac{{\partial P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{\partial u} = 0$$
(16)
$$\frac{\partial C\left( q \right)}{\partial q} + \frac{\partial M\left( q \right)}{\partial q} + \frac{{\partial P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{\partial q} = 0$$
(17)

The Eq. (16) implicitly defines \(u^{*} \left( {P_{penalty} |\overline{\Omega } } \right), u^{*} \left( {y|\overline{\Omega } } \right), u^{*} \left( {L|\overline{\Omega } } \right), u^{*} \left( {\theta |\overline{\Omega } } \right)\), and the Eq. (17) implicitly defines \(q^{*} \left( {P_{penalty} |\overline{\Omega } } \right), q^{*} \left( {y|\overline{\Omega } } \right), q^{*} \left( {\theta |\overline{\Omega } } \right), q^{*} \left( {L|\overline{\Omega } } \right)\), where we assume the other parameters, \(\Omega\), are held constant the assumption of Ceteris Paribus.

Regarding the effect of \(P_{penalty}\), redefine (16) and (17) as

$$\frac{{\partial TAC\left( {u^{*} \left( {P_{penalty} |\overline{\Omega } } \right)} \right)}}{{\partial u^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}} + \frac{{\partial P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {P_{penalty} |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}=0$$
(18)
$$\frac{{\partial C\left( {q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}} + \frac{{\partial M\left( {q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}} + \frac{{\partial P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}} = 0$$
(19)

To see how \(P_{penalty}\) affects the equilibria, we totally differentiate Eqs. (18) and (19),

$$\begin{aligned} &\left\{ {\frac{{\partial^{2} TAC\left( {u^{*} \left( {P_{penalty} |\overline{\Omega } } \right)} \right)}}{{\partial u^{*} \left( {P_{penalty} |\Omega } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {P_{penalty} |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {P_{penalty} |\overline{\Omega } } \right)^{2} }}} \right\}du^{*} \left( {P_{penalty} |\overline{\Omega } } \right) \hfill \\ &+ \left\{ {\frac{{\partial E max\left[ {y - L - u^{*} \left( {P_{penalty} |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}} \right\}dP_{penalty} = 0 \hfill \\ \end{aligned}$$
$$\to \frac{{du^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}{{dP_{penalty} }} = - \frac{{\left\{ {\frac{{\partial E \hbox{max} \left[ {y - L - u^{*} \left( {P_{penalty} |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}} \right\}}}{{\left\{ {\frac{{\partial^{2} TAC\left( {u^{*} \left( {P_{penalty} |\overline{\Omega } } \right)} \right)}}{{\partial u^{*} \left( {P_{penalty} |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E \hbox{max} \left[ {y - L - u^{*} \left( {P_{penalty} |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {P_{penalty} |\overline{\Omega } } \right)^{2} }}} \right\}}}$$

And,

$$\left\{ {\frac{{\partial^{2} C\left( {q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} M\left( {q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)^{2} }}} \right\}dq^{*} \left( {P_{penalty} |\overline{\Omega } } \right) + \left\{ {\frac{{\partial E max\left[ {y - L - u - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}} \right\}dP_{penalty} = 0$$
$$\to \frac{{dq^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}{{dP_{penalty} }} = - \frac{{\left\{ {\frac{{\partial E \hbox{max} \left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}} \right\}}}{{\left\{ {\frac{{\partial^{2} C\left( {q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} M\left( {q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E \hbox{max} \left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)\varepsilon ,L\theta } \right],0} \right]}}{{\partial q^{*} \left( {P_{penalty} |\overline{\Omega } } \right)^{2} }}} \right\}}}$$

Since the objective function is a convex function with respect to \(\left( {u, q} \right)\) as a cost-minimizing objective function, the denominators of \(\frac{{du^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}{{dP_{penalty} }}\) and \(\frac{{dq^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}{{dP_{penalty} }}\) are positive; whereas, the nominators are negative.

Thus, we can conclude that \(\frac{{du^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}{{dP_{penalty} }} > 0\) and \(\frac{{dq^{*} \left( {P_{penalty} |\overline{\Omega } } \right)}}{{dP_{penalty} }} > 0\)

Regarding the effect of \(y\), redefine (16) and (17) as

$$\frac{{\partial TAC\left( {u^{*} \left( {y |\overline{\Omega } } \right)} \right)}}{{\partial u^{*} \left( {y |\overline{\Omega } } \right)}} + \frac{{\partial P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {y |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {y |\overline{\Omega } } \right)}} = 0$$
(20)
$$\frac{{\partial C\left( {q^{*} \left( {y |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {y |\overline{\Omega } } \right)}} + \frac{{\partial M\left( {q^{*} \left( {y |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {y\overline{\Omega } } \right)}} + \frac{{\partial P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {y |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {y |\overline{\Omega } } \right)}} = 0$$
(21)

To see how \(y\) affects the equilibria, we totally differentiate Eqs. (20) and (21).

$$\begin{aligned} & \left\{ {\frac{{\partial^{2} TAC\left( {u^{*} \left( {y |\overline{\Omega } } \right)} \right)}}{{\partial u^{*} \left( {y |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {y |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {y |\overline{\Omega } } \right)^{2} }}} \right\}du^{*} \left( {y |\overline{\Omega } } \right) \hfill \\ & + \left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {y |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {y |\overline{\Omega } } \right)\partial y}}} \right\}dy = 0 \hfill \\ \end{aligned}$$
$$\to \frac{{du^{*} \left( {y |\overline{\Omega } } \right)}}{dy} = - \frac{{\left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {y |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta \overline{\Omega } } \right], 0} \right]}}{{\partial u^{*} \left( {y |\overline{\Omega } } \right)\partial y}}} \right\}}}{{\left\{ {\frac{{\partial^{2} TAC\left( {u^{*} \left( {y |\overline{\Omega } } \right)} \right)}}{{\partial u^{*} \left( {y |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {y |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {y |\overline{\Omega } } \right)^{2} }}} \right\}}}$$

And,

$$\begin{aligned} & \left\{ {\frac{{\partial^{2} C\left( {q^{*} \left( {y|\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {y|\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} M\left( {q^{*} \left( {y|\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {y|\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {y|\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {y|\overline{\Omega } } \right)^{2} }}} \right\}dq^{*} \left( {y|\overline{\Omega } } \right) \hfill \\ &+ \left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {y|\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {y|\overline{\Omega } } \right)\partial y}}} \right\}dy = 0 \hfill \\ \end{aligned}$$
$$\to \frac{{dq^{*} \left( {y|\overline{\Omega } } \right)}}{dy} = - \frac{{\left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {y|\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {y|\overline{\Omega } } \right)\partial y}}} \right\}}}{{\left\{ {\frac{{\partial^{2} C\left( {q^{*} \left( {y|\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {y|\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} M\left( {q^{*} \left( {y|\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {y|\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {y|\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{2} }}} \right\}}}$$

Since the objective function is a convex function with respect to \(\left( {u, q} \right)\) as a cost-minimizing objective function, the denominators of \(\frac{{du^{*} \left( {y |\overline{\Omega } } \right)}}{dy}\) and \(\frac{{dq^{*} \left( {y |\overline{\Omega } } \right)}}{dy}\) are positive; whereas, the nominators are negative.

Thus, we can conclude that \(\frac{{du^{*} \left( {y |\overline{\Omega } } \right)}}{dy} > 0\) and \(\frac{{dq^{*} \left( {y |\overline{\Omega } } \right)}}{dy} > 0\)

Regarding the effect of \(L\), redefine (16) and (17) as

$$\frac{{\partial TAC\left( {u^{*} \left( {L |\overline{\Omega } } \right)} \right)}}{{\partial u^{*} \left( {L |\overline{\Omega } } \right)}} + \frac{{\partial P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {L |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {L |\overline{\Omega } } \right)}} = 0$$
(22)
$$\frac{{\partial C\left( {q^{*} \left( {L |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {L |\overline{\Omega } } \right)}} + \frac{{\partial M\left( {q^{*} \left( {L |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {L |\overline{\Omega } } \right)}} + \frac{{\partial P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {L |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {L |\overline{\Omega } } \right)}} = 0$$
(23)

To see how \(L\) affects the equilibria, we totally differentiate Eqs. (22) and (23).

$$\begin{aligned} & \left\{ {\frac{{\partial^{2} TAC\left( {u^{*} \left( {L |\overline{\Omega } } \right)} \right)}}{{\partial u^{*} \left( {L |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {L |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta \overline{\Omega } } \right], 0} \right]}}{{\partial u^{*} \left( {L |\overline{\Omega } } \right)^{2} }}} \right\}du^{*} \left( {L |\overline{\Omega } } \right) \hfill \\ & + \left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {L |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {L |\overline{\Omega } } \right)\partial L}}} \right\}dL = 0 \hfill \\ \end{aligned}$$
$$\to \frac{{du^{*} \left( {L |\overline{\Omega } } \right)}}{dL} = - \frac{{\left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {L |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{\partial u\partial L}} \right\}}}{{\left\{ {\frac{{\partial^{2} TAC\left( {u^{*} \left( {L |\overline{\Omega } } \right)} \right)}}{{\partial u^{*} \left( {L |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {L |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {L |\overline{\Omega } } \right)^{2} }}} \right\}}}$$

And,

$$\left\{ {\frac{{\partial^{2} C\left( {q^{*} \left( {L |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {L |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} M\left( {q^{*} \left( {L |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {L |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {L |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {L |\overline{\Omega } } \right)^{2} }}} \right\}dq^{*} \left( {L |\overline{\Omega } } \right) + \left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {L |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {L |\overline{\Omega } } \right)\partial L}}} \right\}dL = 0$$
$$\to \frac{{dq^{*} \left( {y|\overline{\Omega } } \right)}}{dy} = - \frac{{\left\{ {\frac{{\partial^{2} P_{penalty} \cdot E\hbox{max} \left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {y|\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {y|\overline{\Omega } } \right)\partial y}}} \right\}}}{{\left\{ {\frac{{\partial^{2} C\left( {q^{*} \left( {y|\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {y|\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} M\left( {q^{*} \left( {y|\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {y|\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E \hbox{max} \left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {y|\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{2} }}} \right\}}}$$

Since the objective function is a convex function with respect to \(\left( {u, q} \right)\) as a cost-minimizing objective function, the denominators of \(\frac{{du^{ *} \left( {L | {\bar{{\Omega }}}} \right)}}{dL}\) and \(\frac{{{\text{dq}}^{ *} \left( {{\text{L}}|\overline{\Omega }} \right)}}{\text{dL}}\) are positive; also as the previous cases, the nominator of \(\frac{{{\text{du}}^{ *} \left( {{\text{L}}|\overline{\Omega }} \right)}}{\text{dL}}\) is positive. In case of the nominator of \(\frac{{{\text{dq}}^{ *} \left( {{\text{L}}|\overline{\Omega }} \right)}}{\text{dL}}\), Note the sign of total differentiation depends on the parameter, \(\uptheta\). When the import limit is low, the value of available offsets, the value of \(\hbox{min} \left[ {{\text{q }}\upvarepsilon,{\text{L}}\uptheta} \right]\) is defined just as the quantity limit, \({\text{L}}\uptheta\). Then we see a sequential partial differentiation with respect to L and q leads the nominator negative. Whereas, when the import limit is not binding and high enough, the value of \(\hbox{min} \left[ {{\text{q}}\upvarepsilon,{\text{L}}\uptheta} \right]\) is characterized as a successfully delivered offset quantity. Note that the partial derivative,\(\frac{{\partial {\text{q}}}}{{\partial {\text{L}}}}\) is negative. Then we see a sequential partial differentiation with respect to L and q leads the nominator positive; then the total differentiation, \(\frac{{{\text{dq}}^{ *} \left( {{\text{L}}|\overline{\Omega }} \right)}}{\text{dL}}\), describes the case where an increase in free permits would decrease the amount of offsets consumed. Thus, we can derive different directions that \(\frac{{{\text{du}}^{ *} \left( {{\text{L}}|\overline{\Omega }} \right)}}{\text{dL}} < 0\) and \(\frac{{{\text{dq}}^{ *} \left( {{\text{L}}|\overline{\Omega }} \right)}}{\text{dL}} > or \le 0\).

Regarding the effect of \(\theta\), redefine (16) and (17) as

$$\frac{{\partial TAC\left( {u^{*} \left( {\theta | {\overline{{\Omega }}}} \right)} \right)}}{{\partial u^{*} \left( {\theta | {\overline{{\Omega }}}} \right)}} + \frac{{\partial P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {\theta | {\overline{{\Omega }}}} \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {\theta | {\overline{{\Omega }}}} \right)}} = 0$$
(24)
$$\frac{{\partial C\left( {q^{*} \left( {\theta |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {\theta |\overline{\Omega } } \right)}} + \frac{{\partial M\left( {q^{*} \left( {\theta |\overline{\Omega } } \right)\overline{\Omega } } \right)}}{{\partial q^{*} \left( {\theta |\overline{\Omega } } \right)}} + \frac{{\partial P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {\theta |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {\theta |\overline{\Omega } } \right)}} = 0$$
(25)

To see how \(\theta\) affects the equilibria, we totally differentiate Eqs. (24) and (25),

$$\left\{ {\frac{{\partial^{2} TAC\left( u \right)}}{{\partial u^{*} \left( {\theta |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {\theta |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {\theta |\overline{\Omega } } \right)^{2} }}} \right\}du^{*} \left( {\theta |\overline{\Omega } } \right) + \left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {\theta |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {\theta |\overline{\Omega } } \right)\partial \theta }}} \right\}d\theta = 0$$
$$\to \frac{{du^{*} \left( {\theta |\overline{\Omega } } \right)}}{d\theta } = - \frac{{\left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {\theta |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {\theta |\overline{\Omega } } \right)\partial \theta }}} \right\}}}{{\left\{ {\frac{{\partial^{2} TAC\left( {u^{*} \left( {\theta |\overline{\Omega } } \right)} \right)}}{{\partial u^{*} \left( {\theta |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u^{*} \left( {\theta |\overline{\Omega } } \right) - \hbox{min} \left[ {q\varepsilon ,L\theta } \right], 0} \right]}}{{\partial u^{*} \left( {\theta |\overline{\Omega } } \right)^{2} }}} \right\}}}$$

And,

$$\begin{aligned} & \left\{ {\frac{{\partial^{2} C\left( {q^{*} \left( {\theta |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {\theta | {\bar{{\Omega }}}} \right)^{2} }} + \frac{{\partial^{2} M\left( {q^{*} \left( {\theta |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {\theta | {\bar{{\Omega }}}} \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {\theta |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {\theta |\overline{\Omega } } \right)^{2} }}} \right\}dq^{*} \left( {\theta |\overline{\Omega } } \right) \hfill \\ & + \left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {\theta |\overline{\varOmega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {\theta |\overline{\Omega } } \right)\partial \theta }}} \right\}d\theta = 0 \hfill \\ \end{aligned}$$
$$\to \frac{{dq^{*} \left( {\theta |\overline{\Omega } } \right)}}{d\theta } = - \frac{{\left\{ {\frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {\theta |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {\theta |\overline{\Omega } } \right)\partial \theta }}} \right\}}}{{\left\{ {\frac{{\partial^{2} C\left( {q^{*} \left( {\theta |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {\theta |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} M\left( {q^{*} \left( {\theta |\overline{\Omega } } \right)} \right)}}{{\partial q^{*} \left( {\theta |\overline{\Omega } } \right)^{2} }} + \frac{{\partial^{2} P_{penalty} \cdot E max\left[ {y - L - u - \hbox{min} \left[ {q^{*} \left( {\theta |\overline{\Omega } } \right)\varepsilon ,L\theta } \right], 0} \right]}}{{\partial q^{*} \left( {\theta |\overline{\Omega } } \right)^{2} }}} \right\}}}$$

Since the objective function is a convex function with respect to \(\left( {u, q} \right)\) as a cost-minimizing objective function, the denominators of \(\frac{{du^{*} \left( {\theta |\overline{\Omega } } \right)}}{d\theta }\) and \(\frac{{dq^{*} \left( {\theta |\overline{\Omega } } \right)}}{d\theta }\) are positive. Contrary to previous cases, the nominator of \(\frac{{du^{*} \left( {\theta |\overline{\Omega } } \right)}}{d\theta }\) is positive, whereas, the nominator of \(\frac{{dq^{*} \left( {\theta |\overline{\Omega } } \right)}}{d\theta }\) is negative.

Thus, we can derive different directions that \(\frac{{du^{*} \left( {\theta |\overline{\Omega } } \right)}}{d\theta } < 0\) and \(\frac{{dq^{*} \left( {\theta |\overline{\Omega } } \right)}}{d\theta } > 0\).

Appendix 2: Beta probability density function

2.1 Probability density function of baseline emissions (y)

figure a

2.2 Probability density function of the CER default factor (\(\varepsilon\))

figure b

Appendix 3

The analytic solutions can be constructed by solving simultaneous Eqs. (10) and (11), and the following shows the closed form solutions written in Mathematica code with conditions on the import limit domains. Only assumptions given to this closed form solutions are the parameters that characterizes the specific Beta distributions in “Appendix 2”. The rest of policy or cost parameters are given in Table 1.

$${\text{u}}^{*} = - \frac{{P\left( {L - \bar{y}} \right)\left( {5P + 252\left( {k + m} \right)\bar{y}} \right)}}{{5P^{2} + 36\left( {5c + 7\left( {k + m} \right)} \right)P\bar{y} + 252c\left( {k + m} \right)\bar{y}^{2} }}$$

where \(1 \ge \theta \ge \frac{{210cP\bar{y}\left( { - L + \bar{y}} \right)}}{{L\left( {5P^{2} + 36\left( {5c + 7\left( {k + m} \right)} \right)P\bar{y} + 252c\left( {k + m} \right)\bar{y}^{2} } \right)}}\)

$${\text{u}}^{ *} = \bar{y} - \frac{1}{7}L\left( {7 + 6\theta } \right) - \frac{{6\left( {k + m} \right)\bar{y}{\text{Root}}\left[ {35L^{12} P^{2} \theta^{12} + \left( {210cL^{7} P\bar{y}\theta^{6} - 210cL^{6} P\bar{y}^{2} \theta^{6} - 30L^{7} P^{2} \theta^{7} + 180cL^{7} P\bar{y}\theta^{7} } \right)\# 1^{5} + \left( {252kP\bar{y} + 252mP\bar{y} + 252ck\bar{y}^{2} + 252cm\bar{y}^{2} } \right)\# 1^{12} \& ,2} \right]^{7} }}{{5L^{6} P\theta^{6} }}$$

where \(0 \le \theta < \frac{{210cP\bar{y}\left( { - L + {\text{ybar}}} \right)}}{{L\left( {5P^{2} + 36\left( {5c + 7\left( {k + m} \right)} \right)P\bar{y} + 252c\left( {k + m} \right)\bar{y}^{2} } \right)}}\)

$$q^{*} = \frac{{210cP\bar{y}\left( { - L + \bar{y}} \right)}}{{5P^{2} + 36\left( {5c + 7\left( {k + m} \right)} \right)P\bar{y} + 252c\left( {k + m} \right)\bar{y}^{2} }}$$

where \(1 \ge \theta \ge \frac{{210cP\bar{y}\left( { - L + \bar{y}} \right)}}{{L\left( {5P^{2} + 36\left( {5c + 7\left( {k + m} \right)} \right)P\bar{y} + 252c\left( {k + m} \right)\bar{y}^{2} } \right)}}\)

$$q^{*} = {\text{Root}}\left[ {35L^{12} P^{2} \theta^{12} + \left( {210cL^{7} P{\text{ybar}}\theta^{6} - 210cL^{6} P{\text{ybar}}^{2} \theta^{6} - 30L^{7} P^{2} \theta^{7} + 180cL^{7} P{\text{ybar}}\theta^{7} } \right)\# 1^{5} + \left( {252kP{\text{ybar}} + 252mP{\text{ybar}} + 252ck{\text{ybar}}^{2} + 252cm{\text{ybar}}^{2} } \right)\# 1^{12} \& ,2} \right]$$

where \(0 \le \theta < \frac{{210cP\bar{y}\left( { - L + \bar{y}} \right)}}{{L\left( {5P^{2} + 36\left( {5c + 7\left( {k + m} \right)} \right)P\bar{y} + 252c\left( {k + m} \right)\bar{y}^{2} } \right)}}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Mallory, M.L. Carbon price interaction between allocated permits and generated offsets. Oper Res Int J 20, 671–700 (2020). https://doi.org/10.1007/s12351-017-0345-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-017-0345-2

Keywords

JEL Classification

Navigation