Skip to main content
Log in

Potential utility of SPECT/CT with 99mTc-Tektrotyd for imaging of post-myocardial infarction inflammation

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

There is a need to develop methods for post-myocardial infarction (MI) inflammation monitoring. Scintigraphy with somatostatin receptor targeted radiotracers has potential in this field. The purpose was to study the association of 99mTc-Tektrotyd uptake intensity in MI area with heart contractility indices over 6-month follow-up.

Methods

Fourteen patients with acute ST-segment elevation anterior MI (STEMI) were examined with 99mTc-Tektrotyd SPECT/CT, myocardial perfusion scintigraphy (MPS) at rest, cardiac magnetic resonance imaging (cMRI) and transthoracic echocardiography (TTE). Scintigraphic results were compared with 6-month TTE indices.

Results

On the 7th day after a MI onset, cardiac 99mTc-Tektrotyd uptake was found in 7 of 14 patients. Median of 99mTc-Tektrotyd SUVmax was 1.59 (1.38; 2.83), the summed rest score (SRS) was 11 (5; 18), infarct size (by cMRI)—13.15 (3.3; 32.2) %. 99mTc-Tektrotyd SUVmax strongly correlated with 6-month heart contractility indices (r = 0.81, P < 0.05 for the end diastolic volume; r = 0.61 < 0.05 for Δ end diastolic volume), with SRS (r = 0.85, < 0.05) and infarct size (by cMRI) (r = 0.79, < 0.05).

Conclusion

The intensity (SUVmax) of 99mTc-Tektrotyd uptake in the area of recent MI directly depends on the size of ischemic myocardial injury and correlates with changes of heart contractility indexes over the 6 month follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

MI:

Myocardial infarction

STEMI:

ST-segment elevation myocardial infarction

SSTR-t:

Somatostatin receptor targeted

MPS:

Myocardial perfusion scintigraphy

TTE:

Transthoracic echocardiography

cMRI:

Cardiac magnetic resonance imaging

MVO:

Microvascular obstruction

IH:

Intramyocardial hemorrhage

LGE:

Late gadolinium enhancement

References

  1. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update. Eur Heart J 2016;37:3232‐45.

    Article  PubMed  Google Scholar 

  2. Jingzhou H, Bellenger NG, Ludman AJ, Shore AC, Strain WD. Treatment of myocardial ischaemia-reperfusion injury in patients with ST-segment elevation myocardial infarction: promise, disappointment, and hope. Rev Cardiovasc Med 2022;23:23. https://doi.org/10.31083/j.rcm2301023.

    Article  Google Scholar 

  3. Majidi M, Kosinski AS, Al-Khatib SM, et al. Reperfusion ventricular arrhythmia ‘bursts’ predict larger infarct size despite TIMI 3 flow restoration with primary angioplasty for anterior ST-elevation myocardial infarction. Eur Heart J 2009;30:757‐64.

    Article  PubMed  Google Scholar 

  4. Chimed S, van der Bijl P, Lustosa R, et al. Functional classification of left ventricular remodelling: prognostic relevance in myocardial infarction. ESC Heart Fail. 2022;9:912‐24. https://doi.org/10.1002/ehf2.13802.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ryabov V, Gombozhapova A, Rogovskaya Y, Rebenkova M, Karpov R, Kzhyshkowska J. Cardiac cd68+ and stabilin-1+ macrophages in wound healing following myocardial infarction: from experiment to clinic. Immunobiology 2018;223:413‐21.

    Article  CAS  PubMed  Google Scholar 

  6. Ong S, Hernández-Reséndiz S, Crespo-Avilanet G, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 2018;186:73‐87. https://doi.org/10.1016/j.pharmthera.2018.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685‐95.

    Article  CAS  PubMed  Google Scholar 

  8. Abbate A, Kontos MCh, Abouzaki NA, Melchior RD, Thomas Ch, Tassell BWV. Comparative safety of interleukin-1 blockade with anakinra in patients with ST-segment elevation acute myocardial infarction (from the VCU-ART and VCU-ART2 pilot studies). Am J Cardiol 2015;115:288‐92.

    Article  CAS  PubMed  Google Scholar 

  9. Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne Ch, Fonseca F, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J 2018;38:3499‐507.

    Article  Google Scholar 

  10. Ridker PM, Devalaraja M, Baeres FMM, Engelmann MDM, Hovingh GK, Ivkovic M, et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2021;10289:2060‐9.

    Article  Google Scholar 

  11. McKnight AH, Katzenberger DR, Britnell SR. Colchicine in acute coronary syndrome: a systematic review. Ann Pharmacother 2021;2:187‐97.

    Article  Google Scholar 

  12. Thackeray JT. PET assessment of immune cell activity and therapeutic monitoring following myocardial infarction. Curr Cardiol Rep 2018;20:13.

    Article  PubMed  Google Scholar 

  13. Tarkin JM, Calcagno C, Dweck MR, Evans NR, Chowdhury MM, Gopalan D, et al. (68)Ga-DOTATATE PET identifies residual myocardial inflammation and bone marrow activation after myocardial infarction. J Am Coll Cardiol 2019;73:2489‐91.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sazonova SI, Syrkina AG, Mochula OV, Anashbaev ZH, Popov EV, Ryabov VV. Subacute myocardial infarction detected by technetium-99m-labeled somatostatin analog scintigraphy. J Nucl Cardiol 2021. https://doi.org/10.1007/s12350-021-02644-4.

    Article  PubMed  Google Scholar 

  15. Lapa C, Reiter T, Li X, Werner RA, Samnick S, Jahns R, et al. Imaging of myocardial inflammation with somatostatin receptor based PET/CT: a comparison to cardiac MRI. Int J Cardiol 2015;194:44‐9.

    Article  PubMed  Google Scholar 

  16. Ćorović A, Gopalan D, Wall CH, et al. Novel approach for assessing postinfarct myocardial injury and inflammation using hybrid somatostatin receptor positron emission tomography/magnetic resonance imaging. Circ Cardiovasc Imaging 2023;16:e014538.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2018;39:119‐77.

    Article  PubMed  Google Scholar 

  18. Krenning BJ, Heiden K, Duncker DJ, Jong M, Bernsen MR. Nuclear imaging of post-infarction inflammation in ischemic cardiac diseases - new radiotracers for potential clinical applications. Curr Radiopharm 2021;14:184‐208.

    Article  CAS  PubMed  Google Scholar 

  19. Grimmes J, Celler A, Birkenfeld B, Sherbinin S, Listewnik MH, Piwowarska-Bilska H, et al. Patient-specific radiation dosimetry of 99mTc-HYNIC-Tyr3-octreotide in neuroendocrine tumors. J Nuclear Med 2011;52:1474‐81.

    Article  Google Scholar 

  20. Verberne HJ, Acampa W, Anagnostopoulos C, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 2015;42:1929‐40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. MikamiY SH, Nagata M, Tairo MI, Komuro KI, et al. Relation between signal intensity on T2-weighted mr images and presence of microvascular obstruction in patients with acute myocardial infarction. AJR 2009;193:w321‐6.

    Article  Google Scholar 

  22. Al-Sabeq B, Nabi F, Shah DJ. Assessment of myocardial viability by cardiac MRI. Curr Opin Cardiol 2019;34:502‐9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Solomon SD, Skali H, Anavekar NS, et al. Changes in ventricular size and function in patients treated with valsartan, captopril, or both after myocardial infarction. Circulation 2005;111:3411‐9. https://doi.org/10.1161/CIRCULATIONAHA.104.508093.

    Article  CAS  PubMed  Google Scholar 

  24. Tamita K, Yamamuro A, Hashimura H, Maeda M, Tokuda T, Yoshida K, et al. Enhancement patterns detected by multidetector computed tomography are associated with the long-term prognosis of patients with acute myocardial infarction. Heart Vessels 2021;36:1784‐93. https://doi.org/10.1007/s00380-021-01868-1.

    Article  PubMed  Google Scholar 

  25. Perea RJ, Morales-Ruiz M, Ortiz-Perez JT, Bosch X, Andreu D, Borras R, et al. Utility of galectin-3 in predicting post-infarct remodeling after acute myocardial infarction based on extracellular volume fraction mapping. Int J Cardiol 2016;15:458‐64. https://doi.org/10.1016/j.ijcard.2016.08.070.

    Article  Google Scholar 

  26. Reindl M, Eitel I, Reinstadler SJ. Role of cardiac magnetic resonance to improve risk prediction following acute ST-elevation myocardial infarction. J Clin Med 2020;9:1041. https://doi.org/10.3390/jcm9041041.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Das A, Kelly C, Teh I, Stoeck CT, Kozerke S, Sharrack N, et al. Pathophysiology of LV remodeling following STEMI: a longitudinal diffusion tensor CMR study. JACC Cardiovasc Imaging 2023;16:159‐71. https://doi.org/10.1016/j.jcmg.2022.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li R, Xiang C, Li Y, Nie Y. Targeting immunoregulation for cardiac regeneration. J Mol Cell Cardiol 2023;177:1‐8. https://doi.org/10.1016/j.yjmcc.2023.02.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Marina Kobozeva Marina Kobozeva and Vadim Goldman for assistance in preparing the article.

Funding

This work is supported by Russian Science Foundation, Grant No 22-25-00234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana I. Sazonova.

Ethics declarations

Disclosures

Svetlana I. Sazonova, Julia N. Ilyushenkova, Anna G. Syrkina, Andrey A. Trusov, Olga V. Mochula, Anna I. Mishkina, Vyacheslav V. Ryabov declares have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 503 kb)

Supplementary file1 (MP3 4066 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazonova, S.I., Ilyushenkova, J.N., Syrkina, A.G. et al. Potential utility of SPECT/CT with 99mTc-Tektrotyd for imaging of post-myocardial infarction inflammation. J. Nucl. Cardiol. 30, 2544–2555 (2023). https://doi.org/10.1007/s12350-023-03312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-023-03312-5

Keywords

Navigation