Skip to main content

Advertisement

Log in

Usefulness of the Vall d’Hebron Risk Score to stratify the risk of patients with ischemic cardiomyopathy

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

To evaluate the Vall d’Hebron-Risk-Score (VH-RS) to stratify the risk of patients with stable ischemic cardiomyopathy (ICM), and assess whether hemoglobin (Hb) and estimated glomerular filtration rate (eGFR) provide additional information to the VH-RS.

Methods and results

We analysed 673 consecutive patients with ICM who underwent gated SPECT. According to VH-RS, we stratified patients into 4-risk-levels: very-low-risk (VLR), low-risk (LR), moderate-risk (MR), and high-risk (HRi). We considered as MACEs: non-fatal myocardial infarction (MI), heart failure hospitalization (HF), coronary revascularization (CR), and cardiac death (CD). Also the cardiac-resynchronization-therapy (CRT), and the implantable-cardioverter-defibrillator (ICD) were investigated. During the follow-up (4.8 ± 2.7 years), 379 patients had MACEs (0.18/patient/year). There were no patients in VLR and LR. All patients were reclassified in 3-risk-levels (MRi = 48; HRi = 121; VHRi[very high risk] = 504). Most patients with MACEs were in VHRi level (test-for-trend: MACEs ≥ 1 without CRT/ICD, P < .001; combined non-fatal MI, CD and CR, P < .001; MACEs ≥ 1 with CRT/ICD, P < .001). The Hb and eGFR values do not properly improve the risk stratification obtained by the VH-RS (global-NRI[net-reclassification-improvement] was: (MACEs ≥ 1 without CRT/ICD: − 10.6%; non-fatal MI, CD and CR: − 9.08%; and MACEs ≥ 1 with CRT/ICD: − 8.85%).

Conclusion

VH-RS is effective in evaluating risk of patients with stable ICM. In our population, adding Hb and eGFR variables do not improve the performance of the VH-RS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CRT:

Cardiac-resynchronization-therapy

eGFR:

Estimated glomerular filtration rate

ICD:

Implantable-cardioverter-defibrillator

ICM:

Ischemic cardiomyopathy

LRi:

Low-risk

MACEs:

Major-adverse-cardiac-event

MRi:

Moderate-risk

NRI:

Net reclassification improvement

VH-RS:

Vall d’Hebron Risk-Score

VLRi:

Very-low-risk

References

  1. Candell-Riera J, Romero-Farina G, Aguadé-Bruix S, Castell-Conesa J, de León G, García-Dorado D. Prognostic value of myocardial perfusion-gated SPECT in patients with ischemic cardiomyopathy. J Nucl Cardiol 2009;16:212‐21.

    Article  PubMed  Google Scholar 

  2. Zelt JGE, Wang JZ, Mielniczuk LM, Beanlands RSB, Fallavollita JA, Canty JM Jr. Positron emission tomography imaging of regional versus global myocardial sympathetic activity to improve risk stratification in patients with ischemic cardiomyopathy. Circ Cardiovasc Imaging 2021;14:e012549.

    Article  PubMed  PubMed Central  Google Scholar 

  3. AlJaroudi W, Alraies MC, Menon V, Brunken RC, Cerqueira MD, Jaber WA. Predictors and incremental prognostic value of left ventricular mechanical dyssynchrony response during stress-gated positron emission tomography in patients with ischemic cardiomyopathy. J Nucl Cardiol 2012;19:958‐69.

    Article  PubMed  Google Scholar 

  4. Chery G, Kamp N, Kosinski AS, Schmidler GS, Lopes RD, Patel M, et al. Prognostic value of myocardial fibrosis on cardiac magnetic resonance imaging in patients with ischemic cardiomyopathy: A systematic review. Am Heart J 2020;229:52‐60.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee CH, Hung KC, Chen CC, Chu CM, Hsieh MJ, Chang PC, et al. A novel echocardiographic parameter for predicting the ischemic etiology of cardiomyopathy and its prognosis in patients with congestive heart failure. J Am Soc Echocardiogr 2011;24:1349‐57.

    Article  PubMed  Google Scholar 

  6. Katritsis DG, Zografos T, Hindricks G. Electrophysiology testing for risk stratification of patients with ischaemic cardiomyopathy: A call for action. Europace 2018;20:f148‐52.

    Article  PubMed  Google Scholar 

  7. Waldum B, Westheim AS, Sandvik L, Flønæs B, Grundtvig M, Gullestad L, et al. Baseline anemia is not a predictor of all-cause mortality in outpatients with advanced heart failure or severe renal dysfunction. Results from the Norwegian Heart Failure Registry. J Am Coll Cardiol 2012;59:371‐8.

    Article  PubMed  Google Scholar 

  8. McAlister FA, Ezekowitz J, Tonelli M, Armstrong PW. Renal insufficiency and heart failure: Prognostic and therapeutic implications from a prospective cohort study. Circulation 2004;109:1004‐9.

    Article  PubMed  Google Scholar 

  9. Romero-Farina G, Candell-Riera J, Aguadé-Bruix S, García DD. A novel clinical risk prediction model for myocardial infarction, coronary revascularization, and cardiac death according to clinical, exercise, and gated SPECT variables (VH-RS). Eur Heart J Cardiovasc Imaging 2020;21:210‐21.

    PubMed  Google Scholar 

  10. Felker GM, Shaw LK, O’Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol 2002;39:210‐8.

    Article  PubMed  Google Scholar 

  11. Damman K, Tang WH, Felker GM, Lassus J, Zannad F, Krum H, et al. Current evidence on treatment of patients with chronic systolic heart failure and renal insufficiency: Practical considerations from published data. J Am Coll Cardiol 2014;63:853‐71.

    Article  PubMed  Google Scholar 

  12. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat Med 2008;27:157‐72.

    Article  PubMed  Google Scholar 

  13. Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011;30:11‐21.

    Article  PubMed  Google Scholar 

  14. Tang YD, Katz SD. Anemia in chronic heart failure: Prevalence, etiology, clinical correlates, and treatment options. Circulation 2006;113:2454‐61.

    Article  PubMed  Google Scholar 

  15. Lindenfeld J. Prevalence of anemia and effects on mortality in patients with heart failure. Am Heart J 2005;149:391‐401.

    Article  PubMed  Google Scholar 

  16. Anand I, McMurray JJ, Whitmore J, Warren M, Pham A, McCamish MA, et al. Anemia and its relationship to clinical outcome in heart failure. Circulation 2004;110:149‐54.

    Article  PubMed  Google Scholar 

  17. Mentz RJ, Greene SJ, Ambrosy AP, Vaduganathan M, Subacius HP, Swedberg K, et al. Clinical profile and prognostic value of anemia at the time of admission and discharge among patients hospitalized for heart failure with reduced ejection fraction: Findings from the EVEREST trial. Circ Heart Fail 2014;7:401‐8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. O’Meara E, Rouleau JL, White M, Roy K, Blondeau L, Ducharme A, et al. Heart failure with anemia: Novel findings on the roles of renal disease, interleukins, and specific left ventricular remodeling processes. Circ Heart Fail 2014;7:773‐81.

    Article  PubMed  Google Scholar 

  19. Dries DL, Exner DV, Domanski MJ, Greenberg B, Stevenson LW. The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction. J Am Coll Cardiol 2000;35:681‐9.

    Article  CAS  PubMed  Google Scholar 

  20. Tedeschi A, Agostoni P, Pezzuto B, Corra’ U, Scrutinio D, La Gioia R, et al. Role of comorbidities in heart failure prognosis part 2: Chronic kidney disease, elevated serum uric acid. Eur J Prev Cardiol 2020;27:35‐45.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McKearnan SB, Wolfson J, Vock DM, Vazquez-Benitez G, O’Connor PJ. Performance of the net reclassification improvement for nonnested models and a novel percentile-based alternative. Am J Epidemiol 2018;187:1327‐35.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Glikson M, Nielsen JC, Kronborg MB, Michowitz Y, Auricchio A, Barbash IM, et al. 2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J 2021;42:3427‐520.

    Article  PubMed  Google Scholar 

  23. Ryan M, Morgan H, Chiribiri A, Nagel E, Cleland J, Perera D. Myocardial viability testing: All STICHed up, or about to be REVIVED? Eur Heart J 2022;43:118‐26.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Rosemay Chehab (London) for her grammatical English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Romero-Farina MD, PhD, FESC, FASNC, FEACVI.

Ethics declarations

Disclosures

The authors declare that they have no conflict of interest to disclosure.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.”.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

Funding

No funding.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Farina, G., Aguadé-Bruix, S., Ródenas-Alesina, E. et al. Usefulness of the Vall d’Hebron Risk Score to stratify the risk of patients with ischemic cardiomyopathy. J. Nucl. Cardiol. 30, 751–763 (2023). https://doi.org/10.1007/s12350-022-03074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-022-03074-6

Keywords

Navigation