Skip to main content
Log in

Diagnostic value of stress thallium-201/rest technetium-99m-sestamibi sequential dual isotope high-speed myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

The aim of this study was to determine the diagnostic accuracy of stress thallium-201/rest technetium-99m-sestamibi sequential dual-isotope high-speed myocardial perfusion imaging (DI-HS-MPI) against invasively determined fractional flow reserve (FFR).

Methods

Fifty-four consecutive patients prospectively underwent DI-HS-MPI before invasive coronary angiography. Perfusion was scored visually by summed stress score on a patient and coronary territory basis. Significant coronary artery disease (CAD) was defined by the presence of ≥ 90% stenosis/occlusion or fractional flow reserve ≤ 0.80 for coronary stenosis ≥ 50%.

Results

FFR was measured in 69 of 162 coronary vessels, with 1.28 ± 0.56 vessels assessed/patient. Sensitivity, specificity, and diagnostic accuracy of MPI for the detection of significant CAD were 92.8%, 69.2%, and 81.4%, on a patient basis, and 83.7%, 90.4%, and 88.8% by coronary territory.

Conclusions

DI-HS-MPI accurately detects functionally significant CAD as defined by using FFR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CZT:

Cadmium-Zinc-Telluride

DI-HS-MPI:

Stress thallium-201/rest technetium-99m-MIBI sequential dual-isotope high-speed myocardial perfusion imaging

FFR:

Fractional flow reserve

ICA:

Invasive coronary angiography

MPI:

Myocardial perfusion imaging

References

  1. Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, et al Multicenter trial of high-speed versus conventional singlephoton emission computed tomography imaging: Quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 2010;55:1965-74.

    Article  PubMed  Google Scholar 

  2. Gimelli A, Bottai M, Giorgetti A, Genovesi D, Kusch A, Ripoli A, et al Comparison between ultrafast and standard single-photon emission CT in patients with coronary artery disease: A pilot study. Circ Cardiovasc Imaging 2011;4:51-8.

    Article  PubMed  Google Scholar 

  3. Berman DS, Kang X, Tamarappoo B, Wolak A, Hayes SW, Nakazato R, et al Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging. JACC Cardiovasc Imaging 2009;2:273-82.

    Article  PubMed  Google Scholar 

  4. Baggish AL, Boucher CA. Radiopharmaceutical agents for myocardial perfusion imaging Circulation 2008;118:1668-74.

    PubMed  Google Scholar 

  5. Barone-Rochette G, Leclere M, Calizzano A, Vautrin E, Céline GC, Broisat A, et al Stress thallium-201/rest technetium-99m sequential dual-isotope high-speed myocardial perfusion imaging validation versus invasive coronary angiography. J Nucl Cardiol 2015;22:513-22.

    Article  PubMed  Google Scholar 

  6. Toth G, Hamilos M, Pyxaras S, Mangiacapra F, Nelis O, De Vroey F, et al Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart J 2014;35:2831-8.

    Article  PubMed  Google Scholar 

  7. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, et al FAME Study Investigators. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213-24.

    Article  CAS  PubMed  Google Scholar 

  8. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al FAME 2 Trial Investigators. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012;367:991-1001.

    Article  CAS  PubMed  Google Scholar 

  9. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al 2013 ESC guidelines on the management of stable coronary artery disease: The task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 2013;34:2949-3003.

    Article  PubMed  Google Scholar 

  10. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 2002;105:539-42.

    Article  PubMed  Google Scholar 

  11. Gimelli A, Bottai M, Quaranta A, Giorgetti A, Genovesi D, Marzullo P. Gender differences in the evaluation of coronary artery disease with a cadmium-zinc telluride camera. Eur J Nucl Med Mol Imaging 2013;40:1542-28.

    Article  CAS  PubMed  Google Scholar 

  12. Duvall WL, Slomka PJ, Gerlach JR, Sweeny JM, Baber U, Croft LB, et al High-efficiency SPECT MPI: Comparison of automated quantification, visual interpretation, and coronary angiography. J Nucl Cardiol 2013;20:763-73.

    Article  PubMed  Google Scholar 

  13. Mouden M, Ottervanger JP, Knollema S, Timmer JR, Reiffers S, Oostdijk AH, et al. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve. Eur J Nucl Med Mol Imaging 2014;41:956-62.

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka H, Chikamori T, Tanaka N, Hida S, Igarashi Y, Yamashita J, et al Diagnostic performance of a novel cadmium-zinc-telluride gamma camera system assessed using fractional flow reserve. Circ J 2014;78:2727-34.

    Article  CAS  PubMed  Google Scholar 

  15. Ben Bouallègue F, Roubille F, Lattuca B, Cung TT, Macia JC, Gervasoni R, et al SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements. J Nucl Med 2015;56:1712-7.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou T, Yang LF, Zhai JL, Li J, Wang QM, Zhang RJ, et al SPECT myocardial perfusion versus fractional flow reserve for evaluation of functional ischemia: A meta analysis. Eur J Radiol 2014;83:951-6.

    Article  PubMed  Google Scholar 

  17. Li M, Zhou T, Yang LF, Peng ZH, Ding J, Sun G. Diagnostic accuracy of myocardial magnetic resonance perfusion to diagnose ischemic stenosis with fractional flow reserve as reference: Systematic review and meta-analysis. JACC Cardiovasc Imaging 2014;7:1098-105.

    Article  PubMed  Google Scholar 

  18. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol 2014;64:1464-75.

    Article  PubMed  Google Scholar 

  19. Li S, Tang X, Peng L, Luo Y, Dong R, Liu J. The diagnostic performance of CT-derived fractional flow reserve for evaluation of myocardial ischaemia confirmed by invasive fractional flow reserve: a meta-analysis. Clin Radiol 2015;70:476-86.

    Article  CAS  PubMed  Google Scholar 

  20. Takx RA, Blomberg BA, El Aidi H, Habets J, de Jong PA, Nagel E, et al Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging 2015;8:e002666.

    Article  PubMed  Google Scholar 

  21. Maublant JC, Marcaggi X, Lusson JR, Boire JY, Cauvin JC, Jacob P, et al Comparison between thallium-201 and technetium-99m methoxyisobutyl isonitrile defect size in single photon emission computed tomography at rest, exercise and redistribution in coronary artery disease. Am J Cardiol 1992;69:183-7.

    Article  CAS  PubMed  Google Scholar 

  22. Nishiyama Y, Miyagawa M, Kawaguchi N, Nakamura M, Kido T, Kurata A, et al Combined supine and prone myocardial perfusion single-photon emission computed tomography with a cadmium zinc telluride camera for detection of coronary artery disease. Circ J 2014;78:1169-75.

    Article  PubMed  Google Scholar 

  23. Layland J, Carrick D, McEntegart M, Ahmed N, Payne A, McClure J, et al Vasodilatory capacity of the coronary microcirculation is preserved in selected patients with non-ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv 2013;6:231-6.

    Article  PubMed  Google Scholar 

  24. Marques KM, Knaapen P, Boellaard R, Westerhof N, Lammertsma AA, Visser CA, et al Hyperaemic microvascular resistance is not increased in viable myocardium after chronic myocardial infarction. Eur Heart J 2007;28:2320-5.

    Article  PubMed  Google Scholar 

  25. Cuculi F, De Maria GL, Meier P, Dall’Armellina E, de Caterina AR, Channon KM, et al Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J Am Coll Cardiol 2014;64:1894-904.

    Article  PubMed  Google Scholar 

  26. Echavarria-Pinto M, Escaned J, Macías E, Medina M, Gonzalo N, Petraco R, et al. Disturbed coronary hemodynamics in vessels with intermediate stenoses evaluated with fractional flow reserve: Acombined analysis of epicardial and microcirculatory involvement in ischemic heart disease. Circulation 2013;128:2557-66.

    Article  PubMed  Google Scholar 

  27. Chiribiri A, Hautvast GL, Lockie T, Schuster A, Bigalke B, Olivotti L, et al Assessment of coronary artery stenosis severity and location: Quantitative analysis of transmural perfusion gradients by high-resolution MRI versus FFR. JACC Cardiovasc Imaging 2013;6:600-9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vanzetto G, Ormezzano O, Fagret D, Comet M, Denis B, Machecourt J. Long-term additive prognostic value of thallium-201 myocardial perfusion imaging over clinical and exercise stress test in low to intermediate risk patients: Study in 1137 patients with 6-year follow-up. Circulation 1999;100:1521-7.

    Article  CAS  PubMed  Google Scholar 

  29. Wolk MJ, Bailey SR, Doherty JU, Douglas PS, Hendel RC, Kramer CM, et al ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease. J Am Coll Cardiol 2014;63:380-406.

    Article  PubMed  Google Scholar 

  30. Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, et al Comparison of defect size between thallium-201 and technetium-99m tetrofosmin myocardial single-photon emission computed tomography in patients with single-vessel coronary artery disease. Am J Cardiol 1996;77:350-4.

    Article  CAS  PubMed  Google Scholar 

  31. Narahara KA, Villanueva-Meyer J, Thompson CJ, Brizendine M, Mena I. Comparison of thallium-201 and technetium-99m hexakis 2-methoxyisobutyl isonitrile single-photon emission computed tomography for estimating the extent of myocardial ischemia and infarction in coronary artery disease. Am J Cardiol 1990;66:1438-4144.

    Article  CAS  PubMed  Google Scholar 

  32. Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: Mechanisms and functional assessment. Nat Rev Cardiol 2015;12:48-62.

    Article  PubMed  Google Scholar 

  33. Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA): Developing evidence-based therapies and research agenda for the next decade. Circulation 2017;135:1075-92.

    Article  PubMed  Google Scholar 

  34. Djaïleb L, Riou L, Piliero N, Carabelli A, Vautrin E, Broisat A, et al SPECT myocardial ischemia in the absence of obstructive CAD: Contribution of the invasive assessment of microvascular dysfunction. J Nucl Cardiol 2017. https://doi.org/10.1007/s12350-017-1135-1.

    Article  PubMed  Google Scholar 

  35. Nudi F, Iskandrian AE, Schillaci O, Peruzzi M, Frati G, Biondi-Zoccai G. Diagnostic accuracy of myocardial perfusion imaging with CZT technology: Systemic review and meta-analysis of comparison with invasive coronary angiography. JACC Cardiovasc Imaging 2017;10:787-94.

    Article  PubMed  Google Scholar 

  36. Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, et al High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 2011;57:70-5.

    Article  PubMed  Google Scholar 

  37. Ko BS, Cameron JD, Meredith IT, Leung M, Antonis PR, Nasis A, et al Computed tomography stress myocardial perfusion imaging in patients considered for revascularization: A comparison with fractional flow reserve. Eur Heart J 2012;33:67-77.

    Article  PubMed  Google Scholar 

  38. Arsanjani R, Hayes SW, Fish M, Shalev A, Nakanishi R, Thomson LE, Friedman JD, et al Two-position supine/prone myocardial perfusion SPECT (MPS) imaging improves visual inter-observer correlation and agreement. J Nucl Cardiol 2014;21:703-11.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Einstein AJ, Pascual TN, Mercuri M, Karthikeyan G, Vitola JV, Mahmarian JJ, et al Current worldwide nuclear cardiology practices and radiation exposure: Results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS). Eur Heart J 2015;36:1689-96.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Siegel JA, Pennington CW, Sacks B. subjecting radiologic imaging to the linear no-threshold hypothesis: A non sequitur of non-trivial proportion. J Nucl Med 2017;58:1-6.

    Article  PubMed  Google Scholar 

Download references

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Barone-Rochette MD, PhD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barone-Rochette, G., Zoreka, F., Djaileb, L. et al. Diagnostic value of stress thallium-201/rest technetium-99m-sestamibi sequential dual isotope high-speed myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis. J. Nucl. Cardiol. 26, 1269–1279 (2019). https://doi.org/10.1007/s12350-018-1189-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-1189-8

Keywords

Navigation